بررسی و مقایسه نتایج پارامتر ضریب بزرگ‌نمایی خاک حاصل از تحلیل دینامیکی خطی و غیرخطی (مطالعه موردی: شهر ارومیه)

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشکده عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مدارک مستند فراوانی براساس مطالعات دفتری و مشاهدات میدانی وجود دارد که نشان می‌دهند هنگام وقوع زلزله، محیط خاکی زیر سازه‌ها و پدیده اندرکنش خاک و سازه، نیروهای لرزه‌ای وارد به سازه را افزایش داده به‌طوری که این افزایش، در موارد زیادی به خرابی و فروریزش سازه­ها منجر شده است. مشاهدات عینی زلزله‌های گذشته، تجربیات و مدل‌سازی‌ها نشان می­دهند که شدت و محتوای فرکانسی امواج زلزله ثبت شده روی سطح زمین، تحت تأثیر رفتار غیرخطی خاک ساختگاه قرار دارد. اطلاع از شدت و چگونگی این تأثیر برای ارزیابی عملکرد لرزه‌ای سازه‌ها و شریان­های حیاتی ضروری است؛ ازاین‌رو در این پژوهش برای ارزیابی رفتار غیرخطی خاک، تحلیل‌های دینامیکی خطی معادل و غیرخطی در حوزۀ زمان روی مدل‌های یک‌بعدی از لایۀ خاک زیرسطحی با استفاده از اطلاعات گمانه­های حفر شده در شهر ارومیه انجام و نتایج دو تحلیل با یکدیگر مقایسه شده است. در این تحلیل­ها، از یازده شتاب‌نگاشت به‌عنوان حرکت ورودی برای تحلیل استفاده شد. با مقایسه شتاب­های طیفی در سطح زمین در دوره‌تناوب­های مختلف با مقادیر متناظر روی سنگ بستر لرزه‌ای، ضریب بزرگ‌نمایی شتاب طیفی در دوره‌تناوب­های مختلف ارائه شده است. نتایج نشان می‌دهد که در دوره‌تناوب­های 1/0 تا ۱ ثانیه، بیشترین مقدار بزرگ‌نمایی و بیشترین تفاوت بین دو تحلیل وجود دارد. به‌علاوه، مقدار ضریب بزرگ‌نمایی خاک بر اثر رخداد زلزله­هایی با دوره بازگشت بزرگ‌تر، به‌علت شدیدتر شدن رفتار غیرخطی خاک، کمتر است و این بزرگ‌نمایی‌ها در دوره‌تناوب­های بیشتری رخ می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Linear and nonlinear analysis investigation on soil dynamic behavior (Case study: Urmia city, Iran)

نویسندگان [English]

  • Milad Mohammadian
  • Abbas Mahdavian
  • Fateme Ghasempour
Department of Civil Engineering, Faculty of Engineering, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

Iran is seismically a very active region. Earthquakes with high magnitudes occur every year in Iran, averagely. Therefore, dynamic response analysis is one of the most important issues in evaluating the soil behavior. In seismic response analysis method of earth layers, deformation issues during earthquakes are important. Two methods exist for dynamic analysis: equivalent linear method and nonlinear method. If seismic motion is weak, shear strain of alluvium will be less than 10-4 percent and earth layer behavior will be elastic. For strains greater than 10-4 percent, soil behavior will be nonlinear; then nonlinear and equivalent linear methods should be used. In large shear strain that soli behavior is completely nonlinear, the problem should be solved at time domain, step by step. Difference between nonlinear and equivalent linear method depends on soil nonlinear behavior.
Ground response can be analyzed with 1D, 2D and 3D modeling. These methods have different capabilities in terms of problem and wave geometry modeling, also to the solution of equation of motion. 1D ground response analysis is used for horizontal structures that boundaries between their layers are distinct, but inclined surfaces, nonlinear ground, heavy and rigid buried structures, walls and tunnels need 2D and sometimes 3D analysis. In other words, while one of the two soil profile dimensions (surface or sub-surface dimension) is much bigger than the other one, transmission synthesis is acceptable. Nonlinear behavior of soil can be modeled as equivalent linear or nonlinear medium by 1D, 2D or 3D methods. Equivalent linear method is popular between engineers, due to its relative simplicity and its simple and clear parameters. Using accelerometers, geotechnical boreholes and equivalent linear and nonlinear analysis, acceleration spectra can be compared.DEEPSOIL software can analyze the alluvium. It is based on direct and continuous solution of equation of transmitted waves and calculates responses of a system with homogenous and viscoelastic layers to shear waves. DEEPSOILis a one dimensional ground response analyzing software which is able to examine the defined layers by both of linear and nonlinear analysis methods.
Urmia city has experienced many large and moderate earthquakes in last years. According to Iranian standard 2800, the design base acceleration in this city is 0.25g. For studying the Urmia bedrock, two borehole data of the city with depth at 16 and 24 meters were used and some appropriate accelerograms were selected and scaled for matching with design spectra. These accelerograms were scaled with the same form spectrum, but they had different maximum acceleration (0.2g, 0.25g, 0.3g, 0.35g, 0.4g, 0.45g and 0.5g). Using DEEPSOIL software with capability of nonlinear and equivalent linear analysis, acceleration spectrawere compared.
The aim of this study is to compare the results of the alluvial analysis with linear and non linear dynamics in estimating the amplification coefficient and the amount of amplification of the waves in then earthquake event
Therefore, in order to evaluate the nonlinear behavior of soil, Equivalent linear  and non linear analysis  in time domain were performed on one-dimensional models of subsurface layer using borehole data in Urmia. The results of the two analyzes were compared with each other. By comparing spectral accelerations at the Earth's surface during different periods with corresponding values on seismic bed rock, the amplification coefficient is presented in different periods.
The results show that in the range of 0.1 to 1 second, the greatest amplification and the greatest difference were present between the two analyzes.
In conclusion, we conclude that both Equivalent linear and nonlinear linear methods can be successfully used to analyze the one-dimensional ground response. The method of applying and interpreting each of these methods requires information about the assumptions of the Ground floor, the manner in which each method operates, the recognition of its constraints, and none of them can be considered decisively and precisely. However, the accuracy of these methods decreases with changes in soil conditions, uncertainty in soil characteristics and the empirical data dispersion, with a large number of input parameters based on them.

کلیدواژه‌ها [English]

  • Dynamic analysis
  • equivalent linear method
  • Nonlinear method
  • deepsoil software

قاسمپور، ف.، 1390، بررسی آنالیز خطی و غیرخطی در رفتار دینامیکی خاک، پایان‌نامه کارشناسی ارشد، دانشکده مهندسی عمران و محیط زیست، دانشگاه شهید بهشتی.

Abrahamson, N. A., Bolt, B. A., Darragh, R. B., Penzien, J., and Tsai, Y. B., 1987, The SMART I accelerograph array (1980-1987): a review: Earthquake spectra, 3(2), 263-287.

Akbari, M., Ghafoori, M., Moghaddas, N. H., and Lashkaripour, G. R., 2011, Seismic microzonation of Mashhad city, northeast Iran: Annals of Geophysics, 54(4), 424-434.

Aki, K., 2003, A perspective on the history of strong motion seismology: Physics of the Earth and Planetary Interiors,137(1), 5-11.

Archuleta, R. J., Liu, P., Steidl, J. H., Bonilla, L. F., Lavallée, D., and Heuze, F., 2003, Finite-fault site-specific acceleration time histories that include nonlinear soil response: Physics of the Earth and Planetary Interiors, 137(1), 153-181.

Assimaki, D., Kausel, E., and Whittle, A., 2000, Model for dynamic shear modulus and damping for granular soils: Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 859-869.

Assimaki, D., Li, W., Steidl, J., and Schmedes, J., 2008, Quantifying nonlinearity susceptibility via site-response modeling uncertainty at three sites in the Los Angeles Basin: Bulletin of the Seismological Society of America, 98(5), 2364-2390.

Bardet, J. P., and Kapuskar, M., 1993, Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake:Journal of geotechnical engineering, 119(3),543-562.

Bardet, J. P., Ichii, K., and Lin, C. H., 2000, EERA: a computer program for equivalent-linear earthquake site response analyses of layered soil deposits: University of Southern California, Department of Civil Engineering.

Beresnev, I. A., Wen, K. L., and Yeh, Y. T., 1995, Nonlinear soil amplification: its corroboration in Taiwan: Bulletin of the Seismological Society of America, 85(2), 496-515.

Beresnev, I. A., 2002, Nonlinearity at California generic soil sites from modeling recent strong-motion data: Bulletin of the Seismological Society of America, 92 (2), 863-870.

Borja, R. I., Chao, H. Y., Montáns, F. J., and Lin, C. H., 1999, Nonlinear ground response at Lotung LSST site: Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 187-197.

Chang, C. Y., Power, M. S., Tang, Y. K., and Mok, C. M., 1989, Evidence of nonlinear soil response during a moderate earthquake: In Proc. 12th Int. Conf. on Soil Mechanics and Foundation Engineering, 3(August), 1-4.

Chin, B. H., and Aki, K., 1991, Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: a preliminary result on pervasive nonlinear site effects: Bulletin of the Seismological Society of America, 81(5), 1859-1884.

Choobbasti, A. J., Rezaei, S., Farrokhzad, F., and Azar, P. H., 2014, Evaluation of site response characteristic using nonlinear method (Case study: Babol, Iran): Frontiers of Structural and Civil Engineering, 1-14.

Elgamal, A., Yan, L., Yang, Z., and Conte, J. P., 2008, Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system: Journal of Structural Engineering, 134(7), 1165-1176.

Field, E. H., Johnson, P. A., Beresnev, I. A., and Zeng, Y., 1997, Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake: Nature, 390(6660), 599-602.

Field, E. H., Kramer, S., Elgamal, A. W., Bray, J. D., Matasovic, N., Johnson, P. A., and Anderson, J. G., 1998, Nonlinear site response: Where we're at (A report from a SCEC/PEER seminar and workshop): Seismological Research Letters, 69(3), 230-234.

Ghanbari, A., Hassanzadeh, A., and Zarangzadeh, S. S., 2010, Amplification ratio and period of the earthquakes in Karaj, Iran: Electronic Journal of Geotechnical Engineering, 15.

Haeri, S. M., and Bonab, M. H., 2000, Seismic microzonation of the city of Tabriz in Iran: Asian Journal of Civil Engineering (Building and Housing), 1(3), 63-70.

Hardin, B. O., and Drnevich, V. P., 1972, Shear modulus and damping in soils: Measurement and parameter effects (Terzaghi Leture): Journal of the Soil Mechanics and Foundations Division, 98(6), 603-624.

Hartzell, S., Leeds, A., Frankel, A., Williams, R. A., Odum, J., Stephenson, W., and Silva, W., 2002, Simulation of broadband ground motion including nonlinear soil effects for a magnitude 6.5 earthquake on the Seattle fault, Seattle, Washington: Bulletin of the Seismological Society of America, 92(2), 831-853.

Hashash, Y., and Park, D., 2001, Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment: Engineering Geology, 62(1), 185-206.

Idriss, I. M., and Seed, H. B., 1968, An analysis of ground motions during the 1957 San Francisco earthquake: Bulletin of the Seismological Society of America, 58(6), 2013-2032.

JICA, 2000, The study on seismic microzoning of the Greater Tehran Area in the Islamic Republic of Iran: Pacific Consultants International Report, OYO Cooperation, Japan.

Kondner, R. L., 1963, A hyperbolic stress-strain formulation for sands:  Northwestern University.

Liam Finn, W. D., Martin, G. R., and Lee, M. K. W., 1978, Comparison of Dynamic Analyses for Saturated Sands: In Volume I of Earthquake Engineering and Soil Dynamics-Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, 1978, Pasadena, California.

Lysmer, J., Seed, H. B., and Schanable, P. B., 1972, Shake: A computer program for earthquake response analysis of horizontally layered sites: U. o. C. Rpt. EERC, 72-12.

Matasovic N., 1993, Seismic response of composite horizontally-layered soil deposits: Doctoral dissertation, University of California, Los Angeles.

Naeini, S. A., and Zarincheh, A., 2010, Site effect microzonation and seismic hazard analysis of Kermanshah region in Iran: Journal of Applied Sciences (Faisalabad), 10(19), 2231-2240.

Newmark, N. M., 1959, A method of computation for structural dynamics: In Proc. ASCE, 85, 67-94.

Schaff, D. P., and Beroza, G. C., 2004, Coseismic and postseismic velocity changes measured by repeating earthquakes: Journal of Geophysical Research: Solid Earth, 109(B10).

Seed, H. B., and Idriss, I. M., 1969, Influence of soil conditions on ground motions during earthquakes: University of California, Institute of Transportation and Traffic Engineering, Soil Mechanics Laboratory.

Streeter, V., Wylie, E., and Richart, F., 1974, Soil motion computations by characteristics method: 12F, 16R. J. GEOTECH. ENGNG. DIV. V100, N. GT3, MAR. 1974, P247–263: In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(8), August A164, Pergamon.

Wen, K. L., 1994, Nonlinear soil response in ground motions: Earthquake Engineering and Structural Dynamics, 23(6), 599-608.

Zeghal, M., Elgamal, A. W., Tang, H. T., and Stepp, J. C., 1995, Lotung downhole array, II: Evaluation of soil nonlinear properties: Journal of Geotechnical Engineering,121(4), 363-378.