پیش‌بینی پتانسیل باد و ارزیابی نتایج در نواحی کوهستانی (مطالعه موردی: استان کرمانشاه)

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشگاه سید جمال‌الدین اسدآبادی، همدان، ایران

2 دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

در این پژوهش، پتانسیل باد در محدوده چند ایستگاه همدیدی استان کرمانشاه برآورد شد که در نزدیکی آنها ایستگاه­های بادسنجی سانا تأسیس شده بود. با مقایسه ویژگی­های باد مشاهده­شده در ایستگاه­های بادسنجی سانا و ویژگی­های برآورد­شده در محل این ایستگاه­ها، دقت برآوردها ارزیابی شده است. برای برآورد ویژگی­های باد، اطلس باد در هر ایستگاه با به‌کارگیری نرم‌افزار WAsP آماده و نقشه­های میانگین سرعت باد و چگالی توان باد در ارتفاع­های 10، 40 و 80 متری از سطح زمین با استفاده از نرم‌افزارهای WAsP و ArcGIS در محدوده مشخصی از هر ایستگاه تهیه شد. سپس ویژگی­های باد مشاهده­شده در ایستگاه‌­های بادسنجی سانا با ویژگی­های برآورد­شده در محل این ایستگاه­ها (پارامترهایی مثل میانگین سرعت باد، میانگین چگالی توان باد، محتمل‌ترین سرعت باد و سرعت باد بیشینه تولید انرژی) مقایسه و دقت برآوردها ارزیابی شد. 
به‌استثنای ایستگاه ماهیدشت، نتایج قابل­قبولی در سه ایستگاه دیگر، به‌ویژه با توجه به ناهمواری پیچیده منطقه به‌دست‌آمده است. تفاوت زیاد ویژگی­های باد در ایستگاه ماهیدشت نیز به‌دلیل فاصله زیاد این ایستگاه از ایستگاه اسلام‌آباد غرب در منطقه‌ای با ناهمواری پیچیده است. همچنین نتایج در ارتفاع 80 متری از سطح زمین در ایستگاه سونقور چندان رضایت‌بخش نبود. به‌عبارت‌دیگر، ناهمواری پیچیده منطقه باعث کاهش دقت برآورد نیم‌رخ باد با قانون لگاریتمی ورتمن ‌شده است. نتایج آزمون T برای نمونه­های زوج­شده نشان داد در سطح اطمینان 95/0، تفاوت معنی‌داری به لحاظ آماری بین مقادیر مشاهده­شده و برآورد­شده وجود ندارد؛ بنابراین از مدل خطی ارائه­شده در نرم‌افزار WAsP می­توان برای پیش‌بینی ویژگی­های باد در فواصل به‌نسبت نزدیک به ایستگاه اندازه‌گیری در مناطق کوهستانی بهره برد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of wind potential and assessment of accuracy in mountainous areas (Case study: Kermanshah province)

نویسندگان [English]

  • Somayeh Rafati 1
  • Mostafa Karimi 2
1 Sayyed Jamaleddin Asadabadi University, Hamedan, Iran
2 Geography depaartment, Tehran university, Tehran, Iran
چکیده [English]

The harvesting of renewable energy sources has become increasingly important to take account of the gradual decline of fossil fuel reserves and the environment degradation associated with the use of fossil fuels. Wind energy, as one of the most well-known renewable energy sources, has been extensively harnessed across the world (Shu et al., 2015). Utilization of energy from wind has gained appreciable momentum and is being widely disseminated for displacement of oil-produced energy, and eventually to reduce the catastrophic effects of fossil fuel energy on environment (Shaahid et al., 2014). Using of wind energy depends on precise prediction of wind properties in areas with no measurement; thus, this paper aimed to evaluate wind potential predictions presented by WAsP software in mountainous areas such as Kermanshah province.
In this study, wind potential was estimated around four synoptic stations where there are SANA wind stations and then predicted and observed wind properties were compared for evaluation of accuracy. Wind data of synoptic stations in Sarpolzahab, Sonqor, Eslamabad, and Kermanshah was used for prediction of wind properties in SANA stations in Kerend, Sounqour, Mahidasht, and Hajiabad sites, respectively. The measurements were used in 40 m AGL (for all cases) and 80 m AGL (for Kerend and Sounqour sites). Using WAsP and ArcGIS software, wind atlas and then mean wind speed and mean wind power density maps were prepared in 10, 40 and 80 m AGL and a relatively limited area (15 to 35 km long) around each station. Then, using measurements in SANA stations and parameters such as mean wind speed, mean wind power density, most probable and maximum energy-carrying wind speed, the accuracy of estimates was assessed.
The results showed that predicted wind properties were acceptable in Kerend, Hajiabad and Sounqour at 40 m AGL, but they were somewhat different in Mahidasht which is due to the long distance in complex terrain. As well, estimates were not so good at 80 m AGL in Sounqour. In other words, the log law of Wortman was not able to predict wind properties precisely at high height in complex terrain. However, paired sample T test result revealed there is no significant difference between predicted and observed values.
Wind potential assessment showed that highlands and ridge mountains (with more than 2000 m height) are areas with high wind power density (>700 W/m2). Mean wind speed in lower regions was calculated 4 to 6 m/s and wind power density was calculated 100 to 300 W/m2 around Kermanshah, Eslamabad and Sonqor stations. The calculated wind speed and wind power density for Sarpolzahab area were 2 to 4 m/s and less than 200 W/m2, respectively. These values in this area are lower than other stations.

کلیدواژه‌ها [English]

  • wind potential prediction
  • wind atlas
  • mean wind power density
  • WAsP software
  • Kermanshah province
قاسمپور، ف.، 1390، بررسی آنالیز خطی و غیرخطی در رفتار دینامیکی خاک، پایان‌نامه کارشناسی ارشد، دانشکده مهندسی عمران و محیط زیست، دانشگاه شهید بهشتی.
Abrahamson, N. A., Bolt, B. A., Darragh, R. B., Penzien, J., and Tsai, Y. B., 1987, The SMART I accelerograph array (1980-1987): a review: Earthquake spectra, 3(2), 263-287.
Akbari, M., Ghafoori, M., Moghaddas, N. H., and Lashkaripour, G. R., 2011, Seismic microzonation of Mashhad city, northeast Iran: Annals of Geophysics, 54(4), 424-434.
Aki, K., 2003, A perspective on the history of strong motion seismology: Physics of the Earth and Planetary Interiors,137(1), 5-11.
Archuleta, R. J., Liu, P., Steidl, J. H., Bonilla, L. F., Lavallée, D., and Heuze, F., 2003, Finite-fault site-specific acceleration time histories that include nonlinear soil response: Physics of the Earth and Planetary Interiors, 137(1), 153-181.
Assimaki, D., Kausel, E., and Whittle, A., 2000, Model for dynamic shear modulus and damping for granular soils: Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 859-869.
Assimaki, D., Li, W., Steidl, J., and Schmedes, J., 2008, Quantifying nonlinearity susceptibility via site-response modeling uncertainty at three sites in the Los Angeles Basin: Bulletin of the Seismological Society of America, 98(5), 2364-2390.
Bardet, J. P., and Kapuskar, M., 1993, Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake:Journal of geotechnical engineering, 119(3),543-562.
Bardet, J. P., Ichii, K., and Lin, C. H., 2000, EERA: a computer program for equivalent-linear earthquake site response analyses of layered soil deposits: University of Southern California, Department of Civil Engineering.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T., 1995, Nonlinear soil amplification: its corroboration in Taiwan: Bulletin of the Seismological Society of America, 85(2), 496-515.
Beresnev, I. A., 2002, Nonlinearity at California generic soil sites from modeling recent strong-motion data: Bulletin of the Seismological Society of America, 92 (2), 863-870.
Borja, R. I., Chao, H. Y., Montáns, F. J., and Lin, C. H., 1999, Nonlinear ground response at Lotung LSST site: Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 187-197.
Chang, C. Y., Power, M. S., Tang, Y. K., and Mok, C. M., 1989, Evidence of nonlinear soil response during a moderate earthquake: In Proc. 12th Int. Conf. on Soil Mechanics and Foundation Engineering, 3(August), 1-4.
Chin, B. H., and Aki, K., 1991, Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: a preliminary result on pervasive nonlinear site effects: Bulletin of the Seismological Society of America, 81(5), 1859-1884.
Choobbasti, A. J., Rezaei, S., Farrokhzad, F., and Azar, P. H., 2014, Evaluation of site response characteristic using nonlinear method (Case study: Babol, Iran): Frontiers of Structural and Civil Engineering, 1-14.
Elgamal, A., Yan, L., Yang, Z., and Conte, J. P., 2008, Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system: Journal of Structural Engineering, 134(7), 1165-1176.
Field, E. H., Johnson, P. A., Beresnev, I. A., and Zeng, Y., 1997, Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake: Nature, 390(6660), 599-602.
Field, E. H., Kramer, S., Elgamal, A. W., Bray, J. D., Matasovic, N., Johnson, P. A., and Anderson, J. G., 1998, Nonlinear site response: Where we're at (A report from a SCEC/PEER seminar and workshop): Seismological Research Letters, 69(3), 230-234.
Ghanbari, A., Hassanzadeh, A., and Zarangzadeh, S. S., 2010, Amplification ratio and period of the earthquakes in Karaj, Iran: Electronic Journal of Geotechnical Engineering, 15.
Haeri, S. M., and Bonab, M. H., 2000, Seismic microzonation of the city of Tabriz in Iran: Asian Journal of Civil Engineering (Building and Housing), 1(3), 63-70.
Hardin, B. O., and Drnevich, V. P., 1972, Shear modulus and damping in soils: Measurement and parameter effects (Terzaghi Leture): Journal of the Soil Mechanics and Foundations Division, 98(6), 603-624.
Hartzell, S., Leeds, A., Frankel, A., Williams, R. A., Odum, J., Stephenson, W., and Silva, W., 2002, Simulation of broadband ground motion including nonlinear soil effects for a magnitude 6.5 earthquake on the Seattle fault, Seattle, Washington: Bulletin of the Seismological Society of America, 92(2), 831-853.
Hashash, Y., and Park, D., 2001, Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment: Engineering Geology, 62(1), 185-206.
Idriss, I. M., and Seed, H. B., 1968, An analysis of ground motions during the 1957 San Francisco earthquake: Bulletin of the Seismological Society of America, 58(6), 2013-2032.
JICA, 2000, The study on seismic microzoning of the Greater Tehran Area in the Islamic Republic of Iran: Pacific Consultants International Report, OYO Cooperation, Japan.
Kondner, R. L., 1963, A hyperbolic stress-strain formulation for sands:  Northwestern University.
Liam Finn, W. D., Martin, G. R., and Lee, M. K. W., 1978, Comparison of Dynamic Analyses for Saturated Sands: In Volume I of Earthquake Engineering and Soil Dynamics-Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, 1978, Pasadena, California.
Lysmer, J., Seed, H. B., and Schanable, P. B., 1972, Shake: A computer program for earthquake response analysis of horizontally layered sites: U. o. C. Rpt. EERC, 72-12.
Matasovic N., 1993, Seismic response of composite horizontally-layered soil deposits: Doctoral dissertation, University of California, Los Angeles.
Naeini, S. A., and Zarincheh, A., 2010, Site effect microzonation and seismic hazard analysis of Kermanshah region in Iran: Journal of Applied Sciences (Faisalabad), 10(19), 2231-2240.
Newmark, N. M., 1959, A method of computation for structural dynamics: In Proc. ASCE, 85, 67-94.
Schaff, D. P., and Beroza, G. C., 2004, Coseismic and postseismic velocity changes measured by repeating earthquakes: Journal of Geophysical Research: Solid Earth, 109(B10).
Seed, H. B., and Idriss, I. M., 1969, Influence of soil conditions on ground motions during earthquakes: University of California, Institute of Transportation and Traffic Engineering, Soil Mechanics Laboratory.
Streeter, V., Wylie, E., and Richart, F., 1974, Soil motion computations by characteristics method: 12F, 16R. J. GEOTECH. ENGNG. DIV. V100, N. GT3, MAR. 1974, P247–263: In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(8), August A164, Pergamon.
Wen, K. L., 1994, Nonlinear soil response in ground motions: Earthquake Engineering and Structural Dynamics, 23(6), 599-608.
Zeghal, M., Elgamal, A. W., Tang, H. T., and Stepp, J. C., 1995, Lotung downhole array, II: Evaluation of soil nonlinear properties: Journal of Geotechnical Engineering,121(4), 363-378.