عملکرد نسخه چهارم مدل اقلیمی منطقه‌ای با پارامترسازی‌های فیزیکی مختلف در کشور ایران: مطالعه موردی سال 2010

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

چکیده

عملکرد RegCM4 با چهار پارامترسازی مختلف برای شبیه­سازی دمای هوای نزدیک سطح زمین و بارش در منطقه ایران طی سال 2010 در مقایسه با داده­های مشاهداتی CRU بررسی شد. در این بررسی از داده­های مدل CFSv2 به­عنوان شرایط اولیه و مرزی RegCM4 استفاده شد. بررسی الگوی اریبی دمای هوا در این شبیه­سازی­ها نشان داد که بیشترین اریبی منفی در سواحل جنوبی دریای خزر و ارتفاعات رشته کوه البرز و بیشترین اریبی مثبت در دشت لوت و جنوب ایران و از نظر زمانی در اواخر فصل بهار، فصل تابستان و اوایل فصل پاییز اتفاق می­افتد. بررسی میانگین ماهانه قدرمطلق اریبی دمای هوا نشان داد که در دو مورد از شبیه­سازی­ها با طرحواره لایه مرزی هلستلگ (Holstlag) اریبی کمتری وجود دارد. بررسی خطای ریشه میانگین مربعات دمای هوا برای این چهار شبیه­سازی نشان داد که طرحواره­های لایه مرزی هلستلگ و UW PBL به­ترتیب در ماه­های سرد و گرم سال عملکرد بهتری دارند. همچنین استفاده از طرحواره همرفت Tiedtke در کنار طرحواره لایه مرزی هلستلگ می­تواند خطای ریشه میانگین مربعات دمای هوا را در فصل­های گرم سال به­شدت کاهش دهد؛ بنابراین استفاده از طرحواره لایه مرزی هلستلگ در RegCM4 برای فصل­های سرد سال و استفاده از همین طرحواره در کنار طرحواره همرفت Tiedtke برای کل سال در منطقه ایران پیشنهاد می­شود. در هر چهار شبیه­سازی در بیشتر ماه­های سال اریبی مثبت بارش برای منطقه ایران مشاهده شد. با بررسی همبستگی چهار شبیه­سازی با داده­های مشاهداتی طی ماه­های مختلف سال، بیشترین همبستگی در جنوب­شرق، شرق، مرکز، غرب و شمال­غرب ایران و کمترین همبستگی در ارتفاعات البرز، دامنه­های غربی رشته کوه زاگرس و نیمه غربی جنوب ایران و شمال­غرب دشت کویر مشاهده شد. نتایج نشان داد که در صورت استفاده از طرحواره همرفت Tiedtke، بارش شبیه­سازی­شده همبستگی زمانی و مکانی بیشتری با بارش مشاهداتی در منطقه ایران خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance of the Regional Climate Model version 4 (RegCM4) with different physical parameterizations over Iran: A case study in 2010

نویسندگان [English]

  • Omid Alizadeh-Choobari
  • Sajedeh Marjani
  • Morteza Qadimi
Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Providing reliable monthly to seasonal forecasts of the climate system using regional climate models with a relatively high spatial resolution is essential to reduce the socio-economic impacts of extreme climate events. In this study, performance of the Regional Climate Model version 4 (RegCM4) with four different sub-grid scale parameterization schemes in simulating 2-m temperature and precipitation over Iran against the observational Climate Research Unit (CRU) dataset in 2010 is evaluated. The climate forecast system version 2 (CFSv2) data are used as initial and boundary conditions for RegCM4. Analysis of 2-m temperature biases of these four simulations by RegCM4 indicated that the largest negative bias is located in the southern coastal plains of the Caspian Sea and over the Alborz Mountain, while the largest positive bias is located over Dast-e Lut and southern Iran. It is found that the largest temperature biases over Iran mostly occur in late spring, during summer and early autumn. Analysis of absolute monthly mean 2-m temperature biases indicated that in two of the conducted simulations the bias is lower, in both of which the Holstlag boundary-layer scheme is used. The root mean square errors (RMSE) of 2-m temperature for these four simulations are also examined and it is found that the Holstlag boundary-layer scheme and UW PBL perform better in cold and warm months, respectively. Using a combination of the Tiedtke convection scheme and the Holstlag boundary-layer scheme significantly reduces the RMSE of 2-m temperature in warm months of the year and leads to the least bias during the whole year over Iran. Thus, to conduct simulations with RegCM4 over Iran, the Holstlag boundary-layer scheme in cold months of the year and the same boundary-layer scheme along with the Tiedtke convection scheme during the whole year are recommended in order to have the least 2-m temperature biases. In the conducted four simulations, positive precipitation biases are observed over Iran in most months of the year, suggesting that RegCM4 generally overestimates precipitation over Iran. Results also indicated that the largest correlation between the observed and simulated precipitation is seen over southeastern, eastern, central, western and northwestern Iran, while the least correlation is seen over the Alborz Mountain, western foothills of the Zagros Mountains, western parts of southern Iran and some parts of Dasht-e Kavir. It is also found that in the RegCM4 simulation with the Tiedtke convection scheme, there are larger spatial and temporal correlations between the observed and simulated precipitation.

کلیدواژه‌ها [English]

  • Regional Climate Model (RegCM)
  • Temperature
  • Precipitation
  • boundary-layer scheme
  • convection scheme

بابائیان، ا.، کریمیان، م.، مدیریان، ر.، بیاتانی، ف.، فهیمی‌نژاد، ا.، 1395، کارایی روش­های پس­پردازش آماری در بهبود پیش­بینی ماهانه بارش مدل MRI-CGCM3 در خراسان رضوی: تحقیقات منابع آب ایران، 12(2)، 83-92.

بابائیان، ا.، مدیریان، ر.، کریمیان، م.، ملبوسی، ش.، 1390، بررسی توانمندی مدل اقلیمی PRECIS درشبیه­سازی بارش­های منطقه‌ای ایران: پژوهش‌های جغرافیای طبیعی، 77(43)، 125-140.

زرین، آ.، محمدی، ف.، بابائیان، ا.، 1394، شبیه­سازی بارش فصل زمستان در استان فارس با استفاده از مدل اقلیمی منطقه‌ای RegCM4: نخستین کنگره ملی آبیاری و زهکشی ایران، دانشگاه فردوسی مشهد.

Alizadeh-Choobari, O., Adibi, P., and Irannejad, P., 2018, Impact of the El Niño-Southern Oscillation on the climate of Iran using ERA-Interim data: Climate Dynamics, 51, 2897–2911.

Alizadeh-Choobari, O., and Najafi, M. S., 2018, Climate variability in Iran in response to the diversity of the El Niño-Southern Oscillation: International Journal of Climatology, 38, 4239–4250.

Balmaseda, M., and Anderson, D., 2009, Impact of initialization strategies and observations on seasonal forecast skill: Geophysical Research Letters, 36, L01701.

Bretherton, C. S., and McCaa J. R., 2004, A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds: Monthly Weather Review, 132, 883–896.

Branković, Č., and Patarčić, M., 2008, Downscaling of ECMWF seasonal integrations by RegCM: Proc. ECMWF, Workshop on Ensemble Prediction, ECMWF, Reading, United Kingdom, 141–150.

Cane, M. A., Zebiak, S. E., and Dolan, S. C., 1986, Experimental forecasts of El Niño, Nature, 321, 827–832.

Cohen, J., Pfeiffer, K., and Francis, J., 2017, Winter 2015/16: A turning point in ENSO-based seasonal forecasts: Oceanography, 30 (1), 82–89.

Dickinson, R. E., Henderson-Sellers, A., and Kennedy, A. P., 1993, Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model, Technical Report: National Center for Atmospheric Research Tech Note NCAR/TN-387+STR.

Díez, E., Orfila, B., FrR’ias, M. D., Fern’andez, J., Cofiño, A. S., and Guti’errez, J. M., 2011, Downscaling ECMWF seasonal precipitation forecasts in Europe using the RCA model: Dynamical downscaling of seasonal precipitation forecasts: Tellus A, Dynamic Meteorology and Oceanography, 63(4), 757–762.

Diro, G. T., Tompkins, A. M., and Bi, X., 2012, Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3: Journal of Geophysical Research, 117(D16), 103.

Dommenget, D., and Rezny, M., 2018, A caveat note on tuning in the development of coupled climate models: Journal of Advances in Modeling Earth Systems, 10, 78–97.

Emanuel, K. A., 1991, A scheme for representing cumulus convection in large-scale models: Journal of the Atmospheric Sciences, 48(21), 2313–2335.

Giorgi, F., and Bates, G. T., 1989, The climatological skill of a regional climate model over complex terrain: Monthly Weather Review, 117, 2325–2347.

Giorgi, F., and Gutowski, W. J., 2015, Regional dynamical downscaling and the CORDEX initiative: Annual Review Environment and Resources, 40, 467–490.

Holtslag, A. A. M., De Bruijn, E. I. F., and Pan, H. -L., 1990, A high resolution air mass transformation model for short-range weather forecasting: Monthly Weather Review, 118 (8), 1561–1575.

Ji, M., Kumar, A., and Leetmaa, A., 1994, A multiseason climate forecast system at the National Meteorological Center: Bulletin of the American Meteorological Society, 75, 569–577.

Kain, J.S., 2004, The Kain–Fritsch convective parameterization: An update: Journal of Applied Meteorology, 43, 170–181.

Kain, J. S., and Fritsch, J. M., 1990, A one-dimensional entraining/detraining plume model and its application in convective parameterization: Journal of the Atmospheric Sciences, 47, 2784–2802

Kleeman, R., 2008, Stochastic theories for the irregularity of ENSO: Philosophical Transactions of the Royal Society A, 366, 2511–2526.

Landman, W. A., Kgatuke, M. J., Mbedzi, M., Beraki, A., Bartman, A., and Piesanie, A. D., 2009, Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modeling perspective: International Journal of Climatology, 29, 1535–1549.

Liang, X. Z., Kunkel, K. E., and Samel, A. N., 2001, Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment: Journal of Climate, 14, 4363–4378.

Neelin, J. D., 2011, Climate Change and Climate Modeling: Cambridge University Press, Cambridge, p282.

Pal, J. S., Parsons, Small E. E., and Eltahir, E. A. B., 2000, Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM: Journal of Geophysical Research, 105, 29579–29594.

Patarčić, M., and Branković, Č., 2012, Skill of 2-m Temperature Seasonal Forecasts over Europe in ECMWF and RegCM Models: Monthly Weather Review, 140, 1326–1346.

Saha, S., et al., 2014, The NCEP Climate Forecast System version 2: Journal of Climate, 27, 2185–2208.

Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G., 2013, Enhanced seasonal forecast skill following stratospheric sudden warmings: Nature Geoscience, 6, 98–102.

Stockdale, T. N., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A., 1998, Global seasonal rainfall forecasts using a coupled ocean-atmosphere model: Nature, 392, 370–373.