برهم‌کنش هواویزهای ناشی از خودروها و ابرهای سرد در آزمایشگاه

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 کارشناس ارشد، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

2 استاد، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

3 استادیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

ذرات آلاینده در هوای شهرها بر سلامت، محیط زیست، اقلیم و دیگر جنبه‌ها اثرگذار هستند. منابع متحرک علت اصلی انتشار هواویزهای اولیه در شهرهای بزرگ نظیر تهران هستند. هواویزهایی که خودروها (بنزینی و دیزلی) تولید می‌کنند، می‌توانند به‌عنوان هسته‌های میعان ابر و هسته‌های یخ بر بارش تأثیرگذار باشند. بارش می‌تواند علاوه بر تأمین منابع آبی به بهبود کیفیت هوای شهرها نیز کمک کند. در ایران اکثر ابرها از نوع ابرهای سرد هستند و مطالعه این ابرها اهمیت ویژه‌ای دارد. در این مقاله با استفاده از روش‌های آزمایشگاهی، نقش این‌گونه هواویزها در توزیع اندازه قطرک‌های اَبَرسرد و بلورهای یخ و رشد گویچه‌های برف با به‌کارگیری سازوکار میله چرخان و گشتاور الکترواستاتیکی بلورها بررسی می‌شود. نتایج آزمایش‌ها نشان می‌دهند هواویزهای ناشی از خودروها اغلب دوده و خاکستر هستند و با وجود این ذرات، قطر میانگین قطرک‌های اَبَرسرد و بلورهای یخ کاهش می‌یابد. با کاهش قطر قطرک-های اَبَرسرد، رشد گویچه‌های برف نیز کاهش می‌یابد که می‌تواند بر برخی پدیده‌ها نظیر آذرخش اثرگذار باشد. براساس این نتایج، ذرات آلاینده تأثیر چندانی بر گشتاور الکترواستاتیکی بلورهای یخ ندارند. شکل بلورهای مشاهده شده در آزمایش‌ها شامل صفحه‌های شش‌ضلعی، ستاره‌ای، قطاعی، ستون‌های توپر و کلاهکی، منشورها، مثلثی شکل‌ها، سوزنک‌‌ها و دندریت شکل‌ها است. هنگامی‌که بلورهای یخ در معرض نور قرار می‌گیرند، به رنگ‌های متفاوتی دیده می‌شوند (همانند حباب صابون در معرض نور). با توجه به ضخامت قسمت‌های مختلف بلورهای یخ و طول موج‌های نور مرئی، رنگ‌های متفاوتی در میدان حرکت این بلورها ظاهر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Interaction of vehicles produced aerosols and cold clouds in the laboratory

نویسندگان [English]

  • amir bagheri mosleh abadi 1
  • Abbas_Ali Aliakbari Bidokhti 2
  • Maryam Gharaylou 3
1 MSc, Space physics Department, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Professor, Space Physics Department, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Assistant Lecturer, Space Physics Department, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Particulate pollutants in urban areas affect human health, environment clouds and climate. With rapid growth of the population and increase in the number of vehicles, in urban areas, air pollution also in large cities has increased substantially. Mobile sources of air pollution have a major contribution to the pollutant levels in urban areas. For example, motor vehicles (gasoline and diesel) play a major role in air pollution in large cities such as Tehran and in fact, they are the main sources of primary aerosols emissions. Aerosols can act as cloud condensation nuclei (CCN) and ice nuclei (IN) and impact on precipitation of different regions. Precipitation can also supply water resources and help to improve the air quality of cities. In Iran, most clouds are cold clouds and ice crystals play a major role in cold precipitation. Using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (FESEM/EDX) methods, morphology and elements composition of aerosols from the vehicle exhaust pipes were investigated. In this study, we injected such aerosols into a cold cloud chamber in laboratory to get a better understanding of microphysics processes on interaction of urban aerosols and clouds. The experimental simulations include growth of graupels through rotating rods mechanism in the presence of vehicles produced aerosols and supercooled droplets. In order to obtain size distribution of supercooled droplets we used replicas method. Also we focused on ice crystals and the impact of pollutant particles on the ice crystals in cloud microphysics. The size distribution of ice crystals was evaluated from images of fallen crystals on a lamella under a microscope. By creating an electric field inside the cloud, the effect of these particles on the electrostatic torque of the ice crystals has been tested. It can provide a better view of predicting the short term lightning. The results show that vehicles produced aerosols are mainly soot and ash and in the presence of these particles, the average diameter of supercooled droplets decreases. By decreasing diameter of supercooled droplets, the growth of the graupel also decreases. Besides, the average diameter of the ice crystals in the presence of vehicles produced aerosols was reduced. However, pollutant particles do not have much effect on the electrostatic torque of ice crystals. The shape of the observed crystals in the experiments included hexagonal, stellar and sectored plates, solid and capped columns, prisms, triangular shapes, needles and dendrites. Because of the different thickness of various parts of the ice crystal exposed to light, different wavelengths of dispersed visible light with different colors appear and then, it can be seen in different colors (like a soap bubble exposed to light). When the crystals are grown large enough, they appear white. With more sophisticated mentoring system, one may distinguish between the formed crystals in different aerosol types.

کلیدواژه‌ها [English]

  • Ice crystals
  • aerosols
  • vehicles
  • cold cloud
  • droplets
  • electrostatic torque
باقری مصلح‌آبادی، ا.، علی‌اکبری بیدختی، ع. و قرایلو، م.، 1397، بررسی تجربی تأثیر ذرات آبدوست بر تعدیل مه: مجله فیزیک زمین و فضا، 10.22059/jesphys.2019.262718.1007027.
Alam, M.S., Zeraati-Rezaei, S., Stark, C.P., Liang, Z., Xu, H., and Harrison, R.M., 2016., The characterisation of diesel exhaust particles–composition, size distribution and
 
      partitioning: Faraday Discussions, 189, 69-84.
Bürgesser, R.E., Pereyra, R.G., and Avila, E.E., 2006, Charge separation in updraft of convective regions of thunderstorm: Geophysical Research Letters, 33(3).
Chen, Y., Shah, N., Braun, A., Huggins, F.E., and Huffman, G.P., 2005, Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels: Energy and Fuels, 19(4), 1644-1651.
Choularton, T.W., Bower, K.N., Weingartner, E., Crawford, I., Coe, H., Gallagher, M.W., Flynn, M., Crosier, J., Connolly, P., Targino, A., and Alfarra, M.R., 2008, The influence of small aerosol particles on the properties of water and ice clouds: Faraday Discussions, 137, 205-222.
Deng, W., Hu, Q., Liu, T., Wang, X., Zhang, Y., Ding, X., Sun, Y., Bi, X., Yu, J., Yang, W., and Huang, X., 2016, Chamber simulation on the formation of secondary organic aerosols (SOA) from diesel vehicle exhaust in China: Atmospheric Chemestry and Physics Discussion, in Review.
Deng, W., Hu, Q., Liu, T., Wang, X., Zhang, Y., Song, W., Sun, Y., Bi, X., Yu, J., Yang, W., and Huang, X., 2017, Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China: Science of the Total Environment, 593, 462-469.
Esmaili, N., Khashman, S., Lamehi-Rachti, M., Aligol, D.A., Shokouhi, F., Oliaiy, P., and Farahani, M.F., 2014, Elemental analysis of aerosols in Tehran’s atmosphere using PIXE and identification of pollution sources: Environmental Monitoring and Assessment, 186(11), 7505-7512.
Foster, T.C., and Hallett, J., 2002, The alignment of ice crystals in changing electric fields: Atmospheric Research, 62(1-2), 149-169.
Foster, T.C., and Hallett, J., 2008, Enhanced alignment of plate ice crystals in a non-uniform electric field: Atmospheric Research, 90(1), 41-53.
Fujitani, Y., Saitoh, K., Kondo, Y., Fushimi, A., Takami, A., Tanabe, K., and Kobayashi, S., 2016, Characterization of structure of single particles from various automobile engines under steady-state conditions: Aerosol Science and Technology, 50(10), 1055-1067.
Giechaskiel, B., Ntziachristos, L., Samaras, Z., Scheer, V., Casati, R., and Vogt, R., 2005, Formation potential of vehicle exhaust nucleation mode particles on-road and in the laboratory: Atmospheric Environment, 39(18), 3191-3198.
Halek, F., Kavouci, A., and Montehaie, H., 2004, Role of motor-vehicles and trend of air borne particulate in the Great Tehran area, Iran: International Journal of Environmental Health Research, 14(4), 307-313.
Hallett, J., and Mossop, S.C., 1974, Production of secondary ice particles during the riming process: Nature, 249(5452), p. 26.
Kireeva, E.D., Popovicheva, O.B., Persiantseva, N.M., Timofeyev, M.A., and Shonija, N.K., 2009, Fractionation analysis of transport engine-generated soot particles with respect to hygroscopicity: Journal of Atmospheric Chemistry, 64(2-3), 129-147.
Liati, A., Schreiber, D., Dasilva, Y.A.R., and Eggenschwiler, P.D., 2018, Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective: Environmental Pollution, 239, 661-669.
Liati, A., Schreiber, D., Eggenschwiler, P.D., Dasilva, Y.A.R., and Spiteri, A.C., 2016, Electron microscopic characterization of soot particulate matter emitted by modern direct injection gasoline engines: Combustion and Flame, 166, 307-315.
Liati, A., Spiteri, A., Eggenschwiler, P.D., and Vogel-Schäuble, N., 2012, Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot: Journal of Nanoparticle Research, 14(11), 1224.
Luque, M.Y., Bürgesser, R., and Avila, E., 2016, Thunderstorm graupel charging in the absence of supercooled water droplets: Quarterly Journal of the Royal Meteorological Society, 142(699), 2418-2423.
Pedernera, D.A., and Ávila, E.E., 2018, Frozen droplets aggregation at temperature below −40° C: Journal of Geophysical Research: Atmospheres, 123(2), 1244-1252.
Santachiara, G., Belosi, F., and Prodi, F., 2014, The mystery of ice crystal multiplication in a laboratory experiment: Journal of the Atmospheric Sciences, 71(1), 89-97.
Saunders, C.P.R., and Hosseini, A.S., 2001, A laboratory study of the effect of velocity on Hallett–Mossop ice crystal multiplication: Atmospheric Research, 59, 3-14.
Saunders, C.P.R., Keith, W.D., and Mitzeva, R.P., 1991, The effect of liquid water on thunderstorm charging: Journal of Geophysical Research: Atmospheres, 96(D6), 11007-11017.
Schaefer, V.J., 1941, A method for making snowflake replicas: Science, 93(2410), 239-240.
Varela, G.G.A., Castellano, N.E., and Ávila, E.E.,
2009, Formation and sublimation of ice structures over cylindrical collectors: International Journal of Heat and Mass Transfer, 52(21-22), 5167-5172.
Young, K.C., 1993, Microphysical Processes in Clouds: Oxford University Press