مقایسه حل عددی معادله فرارفت دوبعدی در هندسه کروی روی سه نوع شبکه یین- یَنگ

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکترای هواشناسی، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایرانگروه فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران- تهران- ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

3 استاد، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

لایه‌های مختلف کره زمین ازجمله اقیانوس‌ها و جو، هندسه تقریباً کروی دارند و با توجه به پیچیدگی‌های موجود در شارش‌های جوی و اقیانوسی، استفاده از یک شبکه کروی مناسب برای حل عددی معادلات حاکم بر این شارش‌ها ضروری است. شبکه یین- یَنگ یکی از انواع شبکه‌های کروی هم‌پوشان است. این شبکه حاصل ترکیب دو شبکه به نام‌های یین و یَنگ با یک سطح هم‌پوشانی است که مقدار این هم‌پوشانی قابلیت تغییر دارد. در ادامه به برخی از مزایای این شبکه اشاره می‌شود. مؤلفه‌های تشکیل دهنده این شبکه، خود شبکه‌هایی متعامد براساس شبکه کروی متداول طول و عرض جغرافیایی هستند. این شبکه فاقد نقطه تکینه است و فاصله‌بندی شبکه‌ای آن به‌طور شبه‌یکنواخت طراحی شده است.
نقطه ضعف اصلی شبکه یین- یَنگ ضرورت استفاده از روش‌های درون‌یابی برای نقاط مرزی مؤلفه‌های شبکه‌ای تشکیل‌دهنده آن است. انواع مختلفی از شبکه‌های یین- یَنگ ارائه شده‌اند که سه نوع از آن، به نام‌های شبکه مستطیلی (پایه)، پیراسته و پیراسته با مؤلفه‌های یکسان در این پژوهش مقایسه می‌شوند. شایان ذکر است که شبکه یین- یَنگ پیراسته با مؤلفه‌های یکسان برای اولین بار در پژوهش حاضر معرفی می‌شود. در این پژوهش، معادله فرارفت دوبعدی در هندسه کروی با استفاده از روش مرتبه دوم مرکزی برای گسسته‌سازی مکانی و روش مرتبه چهارم رونگِ- کوتا برای پیمایش زمانی روی این سه شبکه یین- یَنگ به‌طور عددی حل شده است. علاوه بر این، از یک آزمون موردی استاندارد شناخته شده برای حل معادله فرارفت دوبعدی در هندسه کروی استفاده شده است. نتایج نشان می‌دهند که استفاده از شبکه یین- یَنگ برای حل این معادله در کاهش هزینه محاسباتی بسیار مؤثر است و در بین سه شبکه بررسی شده، استفاده از شبکه پیراسته و شبکه مستطیلی، هزینه محاسباتی کمتری نسبت به شبکه پیراسته با مؤلفه‌های یکسان دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of numerical solution of the spherical two-dimensional advection equation using three types of Yin–Yang grid

نویسندگان [English]

  • Rasoul Mirzaei Shiri 1
  • Sarmad Ghader 2
  • Alireza Mohebalhojeh 3
1 Ph.D. Student, Space Physics Department, Institute of Geophysics
2 Associate Professor, Space Physics Department, Institute of Geophysics, University of Tehran
3 Professor, Space Physics Department, Institute of Geophysics, University of Tehran
چکیده [English]

Due to the approximately spherical nature of the earth and the complex nature of atmospheric and oceanic flows, numerical solution of corresponding governing equations requires using an appropriate coordinate system on the spherical geometry. All spherical grids defined for the spherical surface or shell, have their own advantages and disadvantages generally. The Yin–Yang grid belongs to the family of overset grids. This coordinate is composed of two grid components named Yin and Yang with partial overlapping at their boundaries. Some advantages of the Yin–Yang grids are as follows:
1- Yin and Yang grid components are both orthogonal and based on the conventional latitude–longitude grid;
2- The singular points are absent;
3- The metric factors of the both grid components are analytically known;
4- The grid lengths are uniform approximately;
5- It requires less grid points than for the conventional latitude–longitude grid;
6- We can adapt the existing latitude–longitude discretizations and codes for the use with the Yin–Yang grids.
In this research, three types of the Yin–Yang grid are compared: the rectangular (basic), modified and modified with identical components. It is worth noting that the Yin–Ying grid with identical components is introduced for the first time in the present study. The central second-order finite difference scheme is applied to solve the two-dimensional advection equation on three types of Yin–Yang grid for a well-known test case. In addition, the fourth-order Runge–Kutta method is used to advance the governing equation in time.
Results show that using the Yin–Ying grids to solve the advection equation is highly effective in reducing the computational cost compared to the conventional latitude–longitude grid. However, the use of rectangular and modified Yin–Yang grids entails a lower computational cost than the modified Yin–Yang grid with identical components. In addition, global errors are computed using the absolute, square and infinite norms. By calculating the errors using these norms, it can be seen that there is a slight increase in the errors in all three grids compared to the conventional latitude–longitude grid.
Another point to note is a little higher accuracy of modified Yin–Yang grid with identical components relative to rectangular and modified Yin–Yang grids in the same resolution; though, the higher accuracy is associated with a relative increase in computational cost.
In the considered algorithm, reduction of the accuracy in using Yin-Yang grids is likely due to interpolation. However, interpolation is an essential part of numerical solving process for various oceanic and atmospheric equations on Yin-Yang grids in spherical geometry.

کلیدواژه‌ها [English]

  • Yin-Yang grid
  • spherical coordinates
  • Runge-Kutta
  • two-dimensional advection equation
میرزائی شیری، ر.، قادر، س.، محب‌الحجه، ع.، 1398، حل عددی معادله فرارفت دوبعدی در هندسه کروی روی یک شبکه یین- یَنگ با استفاده از روش مک‌کورمک فشرده مرتبه چهارم: مجله ژئوفیزیک ایران، پذیرش.

Allen, T., and Zerroukat, M., 2016, A deep non-hydrostatic compressible atmospheric model on aYin-Yang grid: Journal of Computational Physics, 319, 44-60.

Baba, Y., Takahashi, K., and Sugimura, T., 2010, Dynamical core of an atmospheric general circulation model on a Yin–Yang grid: Monthly Weather Review, 138, 3988-4005.

Durran, D. R., 2010, Numerical Methods for Fluid Dynamics with Applications to Geophysics: Springer.

Kageyama, A., and Sato, T., 2004, “Yin-Yang grid”: An overset grid in spherical geometry: Geochemestry, Geophysics, Geosystems, 5(9), doi: 10.1029/2004GC000734.

Kageyama, A., 2005, Dissection of a sphere and Yin-Yang grids: Journal of The Earth Simulator, 3, 20-28.

Li, X., Chen, D., Peng, X., Takahashi, K., and Xiao, F., 2008, A multimoment finite-volume shallow-water model on the Yin–Yang overset spherical grid: Monthly Weather Review, 136, 3066-3086.

Li, X., Shen, X., Peng, X., Xiao, F., Zhuang, Z., and Chen, C., 2012, Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme: Procedia Computer Science, 9, 1004-1013.Ohno, N., and Kageyama, A., 2009, Visualization of spherical data by Yin–Yang grid: Computer Physics Communications, 180, 1534-1538.

Qaddouri, A., 2011, Nonlinear shallow-water equations on the Yin-Yang grid: Quarterly Journal of the Royal Meteorological Society, 137, 810-818.

Qaddouri, A., and Lee, V., 2011, The Canadian global environmental multiscale model on the Yin-Yang grid system: Quarterly Journal of the Royal Meteorological Society, 137, 1913-1926.

Qaddouri, A., Pudykiewicz, J., Tanguay, M., Girard, C., and Cote, J., 2012, Experiments with different discretizations for the shallow-water equations on a sphere: Quarterly Journal of the Royal Meteorological Society,138, 989–1003.

Staniforth, A., and Thuburn, J., 2012, Horizontal grids for global weather and climate prediction models: A review: Quarterly Journal of the Royal Meteorological Society, 138, 1-26.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N., 1992, A standard test set for numerical approximation to the shallow water equations in spherical geometry: Journal of Computational Physics, 102, 211-224.