استفاده از سامانه استنتاج فازی (FIS) برای مدل‌سازی محتوای الکترون کلی یون‌سپهر در ایران

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، گروه مهندسی نقشه‌برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی نقشه‌برداری، دانشگاه آزاد اسلامی واحد اهر، ایران

چکیده

در این مقاله مقدار محتوای الکترون کلی (TEC) لایه یون‌سپهر با استفاده از سامانه استنتاج فازی (FIS) مدل‌سازی شده است. نوآوری اصلی این پژوهش، مدل‌سازی سری زمانی تغییرات TEC در ایران با استفاده از FIS است. برای آموزش شبکه فازی، از الگوریتم آموزش بهینه­سازی انبوه ذرات هیبرید (BP-PSO) استفاده شده است. این الگوریتم آموزش، در مراحل اولیه جستجوی جواب از الگوریتم بهینه­سازی انبوه ذرات (PSO) و در نزدیکی جواب بهینه از الگوریتم پس­انتشار خطا (BP) بهره می­برد. از مشاهدات سال 2015 ایستگاه GPS تهران، که یکی از ایستگاه­های شبکه جهانی IGS است، جهت ارزیابی مدل پیشنهادی استفاده شده و نتایج کار با نتایج خروجی­های شبکه جهانی IGS (GIM-TEC) و مدل شبکه عصبی مصنوعی (ANN) با ساختار 2-18-1 مقایسه شده است. جهت ارزیابی دقت و صحت مدل شبکه فازی ارائه­شده در این مقاله، از هر فصل، پنج روز برای داده آزمون انتخاب شده و اعتبارسنجی مدل در این بیست روز صورت گرفته است. براساس نتایج، میانگین خطای نسبی محاسبه­شده در بیست روز مورد آزمون برای مدل FIS، ANN و GIM در مقایسه با GPS به­ترتیب برابر با 25/11%، 68/19% و 03/16% است. همچنین میانگین خطای مطلق محاسبه­شده برای مدل FIS، ANN و GIM در مقایسه با GPS در بیست روز مورد آزمون به­ترتیب برابر با TECU 32/1، TECU 33/3 و  TECU98/1 است. ضریب همبستگی محاسبه­شده در بیست روز مورد آزمون برای FIS، ANN و GIM در مقایسه با GPS به­ترتیب برابر با 9474/0، 6960/0 و 831/0 به­دست­آمده است. موقعیت ایستگاه GPS تهران براساس TEC حاصل از سه مدل FIS، ANN و GIM و با استفاده از تعیین موقعیت نقطه‌ای دقیق (PPP) محاسبه شده است؛. طبق این محاسبه، مدل شبکه فازی نسبت به دو مدل دیگر، خطای کمتری در تعیین موقعیت ایستگاه تهران دارد. نتایج تحلیل­ها حاکی از برتری مدل FIS در مقایسه با مدل ANN و GIM است. با استفاده از مدل پیشنهادی این پژوهش می­توان سری زمانی محتوای الکترونی کلی یون‌سپهر را با دقت و صحت زیاد مدل‌سازی و بررسی کرد. این مدل می­تواند جایگزینی مناسب برای خروجی­های شبکه جهانی IGS در منطقه ایران باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Using the fuzzy inference system to model the ionosphere total electron content in IRAN

نویسندگان [English]

  • Mir Reza Ghaffari Razin 1
  • Milad Mardaneh 2
1 Assistant professor, Department of Geoscience Engineering, Arak University of Technology, Arak, Iran
2 Faculty of Geomatics Engineering, Azad University, Ahar branch, Ahar, Iran
چکیده [English]

Ionosphere is a layer in the upper part of the atmosphere wide-ranging from 60 km to 2000 km. It has a very significant role in radio wave propagation because of its electromagnetic attributes. Ionosphere is mainly affected by solar zenith angle and solar activity. In the day-time, ionization in ionosphere is at the highest level and the ionospheric effects are stronger. In the night-time, ionization decreases and the effects of ionosphere gets weaker. One of the most important parameters that defines the physical structure of ionosphere is Total Electron Content (TEC). TEC is a line integral of electron density along signal path between satellite to the receiver on the ground. The unit of TEC is TECU and 1 TECU equals 1016 electrons/m2. The TEC values can be computed from dual frequency Global Positioning System (GPS) stations, which are the most available observations for studying the Earth’s ionosphere. However, because of scattered repartition of dual frequency of GPS stations, precise information on TEC over the favorable region is unknown.
   Fuzzy inference systems (FIS) take inputs and process them based on the pre-specified rules to produce the outputs. Both the inputs and outputs are real values, whereas the internal processing is based on fuzzy rules and fuzzy arithmetic. FIS is the key unit of a fuzzy logic system having decision making as its primary work. It uses the “IF…THEN” rules along with connectors “OR” or “AND” for drawing essential decision rules. A FIS is defined according to the following five main sections:
•   Rule Base − It contains fuzzy IF-THEN rules;
•   Database − It defines the membership functions of fuzzy sets used in fuzzy rules;
•   Decision-making Unit − It performs operation on rules;
•   Fuzzification Interface Unit − It converts the crisp quantities into fuzzy quantities; and
•   Defuzzification Interface Unit − It converts the fuzzy quantities into crisp quantities.
   In this paper, the TEC of the ionosphere is modeled using FIS. The fuzzy inference system uses the rules IF-THEN to recognize the characteristics of dynamic phenomena. This feature, along with the simplicity of computing, has made it possible for this model to study the temporal and spatial variations of the ionosphere. In fact, the main innovation of the paper is the time series modeling of TEC in Iran using FIS. Hybrid particle swarm optimization training (BP-PSO) algorithm is used to train fuzzy network. This algorithm uses the PSO in the early stages of searching for solution and uses the back propagation (BP) near the optimal solution. From the observations of 2015, the Tehran GPS station, which is one of the IGS global stations, was used for evaluation of the proposed model. Also, the results were compared with the results of the global ionosphere map (GIM) TEC as well as artificial neural network model (ANN). In order to evaluate the accuracy of the fuzzy model presented in this paper, 5 days of each season were selected as the test data and model validation was performed in these 20 days. Based on the results, the average relative error calculated in the 20 test days for FIS, ANN and GIM models compared to GPS were 11.25%, 19.68% and 16.03%, respectively. Besides, the average absolute error calculated for FIS, ANN and GIM models compared to GPS in the 20 test days was 1.32 TECU, 3.33 TECU and 1.98 TECU, respectively. The calculated correlation coefficients between TEC obtained from FIS, ANN and GIM compared to GPS were 0.9474, 0.6960 and 0.831, respectively. The results of the analysis show that the FIS model is superior to the ANN and GIM models. Using the proposed model of this research, the time series of the ionosphere TEC can be modeled and investigated with high accuracy. This model can also be a good alternative to the outputs of the IGS network in Iran.

کلیدواژه‌ها [English]

  • Fuzzy logic
  • Artificial Neural Network
  • GPS
  • Ionosphere
  • TEC
اکبرزاده توتونچی، م، ر.، 1386، محاسبات نرم: جزوه کلاسی، دانشگاه فردوسی مشهد.

قادر، س.، کرمی، خ.، رایین، ا.، 1389، اعتبارسنجی مدل یون‌سپهری IRI2007 در یک بازه زمانی کمینه فعالیت­های خورشیدی در منطقه تهران با استفاده از داده­های ایستگاه یون‌سپهر (یونسفر) مؤسسه ژئوفیزیک دانشگاه تهران: مجله ژئوفیزیک ایران، 5(2)، 16-27.

 

Akhoondzadeh, M., 2014, Investigation of GPS-TEC measurements using ANN method indicating seismo-ionospheric anomalies around the time of the Chile (Mw=8.2) earthquake of 01 April 2014: Advance in Space Research, 54(9), 1768-1772.

Amerian, Y., Hossainali, M., Voosoghi, B., and Ghaffari Razin, M. R., 2010, Tomographic reconstruction of the ionospheric electron density in terms of wavelets: International Journal of Aerospace Science and Technologies, 7, 19-29.

Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., and Radicella, S. M., 2007, Calibration errors on experimental slant total electron content (TEC) determined with GPS: Journal of Geodesy, 81(2), 111–120.

Farzaneh, S., and Forootan, E., 2017, Reconstructing regional ionospheric electron density: A combined spherical slepian function and empirical orthogonal function approach: Surveys in Geophysics, 39(2), 289–309.

Fortier, N., Sheppard, J., and Pillai, K., 2012, Training artificial neural networks using overlapping swarm intelligence with local credit assignment: Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), 1420–1425, doi:10.1109/SCIS-ISIS.2012.6505078.

Ghaffari Razin, M. R., Voosoghi, B., and Mohammadzadeh, A., 2015, Efficiency of artificial neural networks in map of total electron content over Iran: Acta Geodaetica et Geophysica, 51(3), 541-555.

Ghaffari Razin, M. R., and Voosoghi, B., 2016, Modeling of ionosphere time series using wavelet neural networks (case study: N-W of Iran): Advances in Space Research, 58(1), 74-83.

Haykin. S., 1994, Neural Networks, A Comprehensive Foundation: Macmillan College Publishing Company, New York.

Komjathy, A., 1997, Global ionospheric total electron content mapping using the Global Positioning System, Ph.D. thesis, University of New Brunswick, Fredericton, New Brunswick, Canada.

Leandro, R., 2007, A new technique to TEC regional modeling using a neural network: Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.

Mars, P., Chen, J. R., and Nambiar, R., 1996, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications: CRC Press, Boca Raton, Florida.

Moon, Y., 2004, Evaluation of 2-dimensional ionosphere models for national and regional GPS networks in Canada: Master’s thesis, University of Calgary, Calgary, Alberta, Canada.

Orus, R., 2005, Improvement of global ionospheric VTEC maps by using Kriging interpolation technique: Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1598–1609.

Sabzehee, F., Farzaneh, S., Sharifi, M. A., and Akhoondzadeh, M., 2018, TEC regional modeling and prediction using ANN method and single frequency receiver over IRAN: Annals of Geophysics, 61(1), GM103, 2018; doi: 10.4401/ag-7297.

Sayin, I., Arikan, F., and Arikan, O., 2008, Regional TEC mapping with random field priors and Kriging: Radio Science, 43(5), RS5012, doi: 10.1029/2007RS003786.

Schaer, S., 1999, Mapping and predicting the Earth’s ionosphere using the global positioning system: PhD thesis, Astronomical Institute, University of Berne, Switzerland.

Seeber, G., 2003, Satellite Geodesy: Foundations, Methods and Applications: Walter de Gruyter GmbH & Co., Berlin and New York, 53.

Takagi, T., and Sugeno, M., 1985, Fuzzy identification of systems and its applications to modeling and control: IEEE Transactions
 on Systems, Man and Cybernetics, 15(1), 116-132.

Wielgosz, P., Brzezinska, D., and Kashani, I., 2003, Regional ionosphere mapping with Kriging and multiquadratic method: Journal of Global Positioning Systems, 2, 48–55.

Zadeh, L. A., 1996, Fuzzy sets: Information and control, 8(3), 338-353.