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Abstract 

Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with 
a variety of porous and permeable sediments so they are important in the exploration of oil 
and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to 
the channel thickness, whereas, low-frequency components are sensitive to the channel 
infill materials. Therefore, decomposition of seismic data to its spectral components 
provides useful information about both thickness and infill materials of buried channels. A 
4D spectral data is produced by applying spectral decomposition to a 3D seismic data 
cube which is decomposed into several single frequency 3D cubes. Since different 
frequencies carry different types of information, each single frequency cube cannot show 
all subsurface information simultaneously. Therefore, we used color stacking method and 
constructed RGB plots, which represent more information than single frequency volumes. 
In this paper, we applied three methods of Deconvolutive Short Time Fourier Transform 
(DSTFT), S Transform (ST) and Short Time Fourier Transform (STFT) to a land seismic 
data from an oil field in the south-west of Iran. We used the resulting spectral volumes to 
create RGB color stacking plots for tracing buried channels. According to the results, the 
RGB plots based on the DSTFT method revealed more details than the ST and STFT 
methods. 
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1 Introduction 
Ancient stream channels are usually 
involved with hydrocarbon accumulation. 
Channels due to different sedimentation 
may have different velocity in 
comparison with surrounding layers. So it 

is important for an interpreter to detect 
channels and determine their lateral 
continuation. In reflection seismic data, 
high-frequency components are sensitive 
to channel thickness and low-frequency 
components are sensitive to the channel 
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infill materials. Therefore, decomposition 
of seismic data to its spectral components 
can provide good information about both 
thickness and infill materials of buried 
channels (Guo et al., 2006, 2009; Liu and 
Marfurt, 2007b; Nikoo et al., 2012; 
Sadeghi et al., 2014). Due to the non-
stationarity property of seismic signals, 
time-frequency transforms have widely 
been used in seismic data interpretation. 
The time-frequency transforms can reveal 
the characteristics of the signal that are 
not easily observed at the time or the 
frequency representation. There are 
various methods for spectral 
decomposition of signals such as short 
time Fourier transform (STFT) (Gabor, 
1946; Sattari et al., 2013), wavelet 
transform (Mallat, 1999, 2008), Wigner–
Ville distribution (WVD) (Wigner, 1932; 
Ville, 1948; Roshandel Kahoo and Nejati 
kalatah, 2011), and S transform 
(Stockwell et al., 1996). In spite of the 
wide applications of the conventional 
time-frequency transforms, they have 
some disadvantages. The resolution of the 
STFT strongly depends on the length of 
the window function and the applications 
of the WVD are limited by cross-terms 
(Boashash, 2003; Boashash, 2015). 
Auger et al. (1996) introduced smoothed 
pseudo WVD (SPWVD) to eliminate the 
cross-terms. Smoothing the WVD leads 
to a trade-off between the time-frequency 
resolution and cross-terms elimination. 
When the smoothing function is replaced 
by the WVD of window function used in 
STFT, the SPWVD will become the 
STFT spectrogram (Zhang and Lu, 2010; 
Lu and Li, 2013; Zarei et al., 2012). 
There are no cross-terms in STFT 
spectrogram, but it has low resolution in 
time and frequency. Therefore, a 2D 
deconvolution operator can be used 
instead to generate a high time-frequency 
representation of a signal with no cross-

terms. The resulting spectrogram after 2D 
deconvolution is called deconvolutive 
STFT or DSTFT.  
 

 
 
Figure 1. Schematic view of primary colors and their 
intensities in RGB color model (after Plataniotis and 
Venetsanopoulos, 2000). 
 

Each 3D seismic volume is 
decomposed into a group of single 
frequency 3D volumes (or, alternatively, 
a 4D volume). An interpreter investigates 
the single frequency 3D volumes 
individually by producing the frequency 
slices from them at the target horizon 
time (Fahmy et al., 2005). The most 
common means of investigating these 
components is simply by scrolling 
through them to determine manually 
which single frequency best delineates an 
anomaly of interest. The simultaneous 
interpretation of all single frequency 3D 
volumes and their slices is very difficult 
even for a professional interpreter. Since 
different frequencies contain different 
types of information (low frequencies are 
sensible to channel content and high 
frequencies are sensible to channel 
boundaries), these single frequency 3D 
volumes can be combined to create a new 
3D volume, which has all of the 
information simultaneously. One of the 
best methods of combining the single 
frequency 3D volumes is the Red-Green-
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Blue (RGB) plot (Onstott et al., 1984; 
Theophanis and Queen, 2000; Stark, 
2005; Liu and Marfurt, 2007a; Sadeghi et 
al., 2012). Although RGB images 
achieved from this method have more 
acceptable quality in comparison with 
single frequency scanning method, but 
they ignore a big part of frequency 
bandwidth. In this workflow, we 
constructed RGB plot using three 
predetermined cosine raised basis 
functions (Liu and Marfurt, 2007b). We 
used the linear least square method to 
approximate the spectrum by these basis 
functions and plotted the coefficients 
against red, green and blue. This method 
is less time consuming and displays 
moderate details of full amplitude 
spectrum (Liu and Marfurt, 2007b). Our 
results showed that RGB color stacking 
method produces more detailed images 
than single frequency representation 
method. We also showed that DSTFT due 
to better time and frequency resolution, 
produces more precise RGB images in 
comparison with ST and STFT results. 
 

 
Figure 2. schematic view of least square coefficients of 
fitted basis functions to instantaneous frequency versus 
amplitude (black line).  
 
2 Deconvolutive Short Time Fourier 
Transform (DSTFT) 
There are different methods which 
perform spectral decomposition on 

signals. Short time Fourier transform 
(STFT) is a technique which is carried 
out by multiplying a time window to the 
signal. The STFT of signal ( )x t  is given 
by (Zhang and Lu, 2010): 
 

( ) * ( 2 ), ( ) ( ) ifuSTFT t f x u h u t e duπ+∞ −

−∞
= −∫   

                                                                           (1) 
 
where, ( )h u t−  is the window function 
and * means conjugate transpose. The 
STFT spectrogram, which is the squared 
modulus of the STFT, is given by (Lu 
and Li, 2013): 
 

( ) 2( , ) , .SPEC t f STFT t f=                        (2) 
 
But the resolution of its spectrogram may 
be affected by the length of the window. 
A good time resolution requires a short 
time window and a good frequency 
resolution requires a narrow-band filter, 
i.e. a long time window, but 
unfortunately, these two cannot be 
simultaneously granted. The Wigner–
Ville distribution (WVD) is an alternative 
technique which solves the problem of 
time and frequency localization but its 
application is limited due to the presence 
of the cross-terms. In order to suppress 
the cross-terms, a 2D smoothing function 
is applied to the WVD of the signal but 
this may reduce the time-frequency 
resolution too. Several methods such as 
Pseudo WVD or PWVD and Smoothed 
Pseudo WVD or SPWVD have been 
introduced to eliminate the cross-terms 
(Auger et al., 1996). The WVD of signal 

( )x t  is given by (Boashash, 2015): 
 

* 2( , ) ( ) ( ) ,
2 2

j fWVD t f x t x t e dπ ττ τ
τ

+∞ −

−∞
= + −∫   

                                                                           (3) 
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where * denotes conjugate transpose. The 
SPWVD of the signal ( )x t is defined as 
Eq. (4) (Boashash, 2015): 
 

( , ) ( , )

( , ) .                     

xSPWVD t f u

WVD t u f dud

ϕ τ

τ τ

+∞ +∞

−∞ −∞

=

× − −

∫ ∫         

                                                                           (4) 
 

If we choose the kernel function 
( , )uϕ τ  as the WVD of the window 

function, the result will be the STFT of 
the signal ( )x t  and can be expressed as 2-
D convolution form Eq. (5) (Zhang and 
Lu, 2010): 

 
( , ) ( , ) ( , ),x h xSPEC t f WVD t f WVD t f= ∗∗  

                                                                           (5) 
where ( ),hWVD t f  and ( , )xWVD t f  are the 
WVDs of the window function ( )h t  and 
the signal ( )x t , respectively.  

( , )xSPEC t f  has poor time and 
frequency resolution, but the problem of 
cross-term interferences is almost 
obviated. By applying 2-D deconvolution 
to the STFT spectrogram by Lucy–
Richardson algorithm a good estimate of 

xWVD can be achieved which has an 
acceptable time and frequency resolution 
and no cross-term interferences as (Lu 
and Zhang, 2009): 

 
1 ,k k x

x x h k

h x

SPEC
WVD WVD WVD

WVD WVD
+ = ∗∗

∗∗

 
 
 

  

                                                              (6) 
 
where 1k +  is the iteration number and 

0

x xWVD SPEC= . The obtained spectrogram 
is called deconvolutive short time Fourier 
transform (DSTFT) which has a suitable 
resolution as WVD and no cross-term 
interference.  
 

 
(a) 
 

 
(b) 
 
Figure 3: (a) 3D view of reasl seismic data and (b) 
horizontal slice from real seismic data at time sample 
12.  
 
3 S Transform 
S transform (Stockwell et al., 1996) is 
one of time–frequency transforms 
combining elements of short time Fourier 
transform (STFT) and wavelet transform 
(WT). It uses analyzing window having a 
width inversely and a height linearly 
scaled with the frequency. Scaling will 
improve frequency resolution for both 
high and low frequencies like WT but in 
addition it maintains the absolute phase 
of frequency components. The S 
transform of signal ( )x t  can be given by 
(Stockwell et al., 1996): 
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τ
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π

−
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4 RGB color stacking method 
RGB images, also known as true color 
images, are 3M N× ×  arrays which R 
denotes the red, G the green and B the 
blue component of each pixel. The 
intensity of each component varies 
between 0 and 1. So (0, 0, 0) defines the 
black color and (1, 1, 1) defines the white 
color. As can be seen in Figure 1, when 
the intensity of one component is higher 
than the others, the final color of the pixel 
tends to that component and when two 
components have the same intensity, the 
final color tends to secondary colors. 

One of the first multi-attribute displays 
was introduced by Onstott et al. (1984). 
They plotted near-, middle- and far- angle 
stacks to red, green and blue components 
to obtain a color stack model for 
investigating amplitude variation with 
offset (AVO). Bahorich et al. (2002) 
applied this method to spectral 
components (i.e. single frequency slices) 
to construct simple RGB images. This 
will lose a big part of information 
existing in the unused spectral 
components. Stark (2005) computed 
average frequencies and mapped them 
against red, green and blue (low 
frequency average against red, middle 
frequency average against green, and 
high frequency average against blue). 
Sadeghi et al. (2012) used the ST and 
STFT transforms for decomposition of 
seismic data. They constructed RGB plots 
by basis functions. By using basis 
functions and defining windows, they 
introduced some frequency intervals and 
plotted them versus primary components. 
Three simple raised cosine functions with 
different frequency centers and different 
periods were chosen. Although it 

improved the images quality, but it was 
time consuming. An alternative method is 
carried out by approximating the 
spectrum with cosine raised basis 
functions (Liu and Marfurt, 2007b) and 
finally by mapping the coefficients 
against red, green and blue. In this 
workflow, we used the DSTFT method 
(rather than the STFT and ST) for 
spectral decomposition and linear least 
square method to reduce timing and 
improve the results. Figure 2 shows a 
schematic view of the least square 
coefficients of the fitted basis functions to 
instantaneous frequency versus amplitude 
(black line). 

The equation we have used for basis 
function is given by (Liu and Marfurt, 
2007b): 

 

( )
Basis function 1 cos

1 ,
2

RGB

bandwidth

f f

k f

π −
= +

×

  
  
  

   

                                                              (8) 
 
where RGBf is the frequency center of 
different intervals, bandwidthf  is frequency 
bandwidth of seismic data and k  is an 
arbitrary constant. It is obvious that the 
magnitude of k, directly affects the length 
of basis function window. So a larger 
value of k  will lead to including a bigger 
part of spectral components and 
consequently, it affects RGB images 
quality. That is, the bigger magnitude of 
k  will result to closer coefficients and 
consequently to a grey scale image.  
 
5 Results for real seismic data 
The RGB plots can reveal events with 
sharp frequency response such as features 
with varying trends and varying lithology 
and buried channels have these kinds of 
properties. 
    Figure 3a demonstrates the  of the real 
seismic data of an oil field in SW of Iran  
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Figure 4. Single frequency slices corresponding to the frequencies 10, 20, 30 Hz (left, middle and right columns, 
respectively) for the STFT, ST and DSTFT (upper-, middle- and lower-row, respectively). 

 
 

 
 

Figure 5. The RGB plot exhibition of spectral frequencies for the STFT ( 0.075k = ). 
 
 

having 601 inline number and 400 xline 
number. Frequency band width of data is 
70 Hz. 

According to the unpublished reports, 
we expect a buried channel at the time 
sample 12. Figure 3b shows a horizontal 

slice view at the same time sample 
extracted from the seismic volume. The 
anticipated channel is not much clear in 
this time slice. 

Figure 4 (up-, middle- and bottom-
row) shows single frequency slices of 10, 
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20, 30 Hz for STFT, ST and DSTFT 
respectively. We can see that infill 
material of the channel has a higher 
amplitude in low frequency slices but 
boundary resolution is not sharp. 
Conversely, the amplitude of infill 
material is lower in high frequency slices 
but boundary resolution grows up. An 
expert interpreter may achieve some 
information by observing variations in 
these spectral components. Figures 5 
through 7 show least-square based RGB 
images of the Figure 4, for the STFT, ST 

and DSTFT, respectively. As one can see, 
the STFT and ST images do not have 
considerable differences but the DSTFT 
because of better time and frequency 
resolution, has generated images with 
more color contrast and less color 
interference. So it delineates channel 
boundaries precisely. 

Also we can see that different centers 
reveal different details. The low 
frequency centers show channel content 
properties, and the high frequency centers 
show channel boundaries better. 

 

 
 

Figure 6. The RGB plot exhibition of spectral frequencies for the ST ( 0.075k = ). 
 

 
Figure 7. The RGB plot of spectral frequencies for the DSTFT ( 0.075k = ). 
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6 Conclusions 
In this paper, we investigated the 
potential of the RGB images in 
representing subsurface details contained 
in 3-D seismic data cubes. The RBG 
generated images were compared to those 
obtained from horizontal slices of 
constant frequency cubes. Comparing the 
results showed that the single frequency 
slices did not reveal the fine quality 
image and did not show all the features 
existing in the data. However, the RGB 
images exposed channel and its fine 
branches without requiring the generation 
of 3-D single frequency volumes. We 
showed that due to the better time and 
frequency localization of the DSTFT, its 
images had better color contrast in 
comparison with the ST and STFT, and 
channel boundaries were precisely 
identified. 
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