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 Abstract 
Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear 
ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the 
data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a 
stochastic population-based optimizer, originally inspired by the social behavior of fish 
schools and bird flocks. PSO is a global search method, meaning that it has the ability to 
escape local minima. In addition, PSO is an iterative method, wherein an initial solution is 
chosen randomly and then improved iteratively until the algorithm finds a solution close 
enough to the global minimum. Herein, the inverse problem of estimating the thickness of 
the crust from gravity anomalies is formulated as a single objective optimization problem 
and is solved by PSO. The method is first tested on a realistic synthetic crustal model both 
with and without the presence of white Gaussian noise (WGN). Then it is applied to the 
gravity data from EIGEN-6c4, the latest combined global gravity model, in order to find 
the base of the crust in the Zagros Mountains (Iran) and compare the results with those of 
other geophysical methods. The assumed crustal model is one with a linear density 
gradient in which the densities at both the surface and the base of the crust are fixed. 
Results agree well with the previously published works including both seismic and 
potential field studies. 
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1    Introduction 
The nonlinear inverse problem of 
estimating the depth of a layer from 
gravity data is one of the oldest 
geophysical inverse problems (e.g. Bott, 
1960; Bott, 1965). For instance, gravity 
methods have been vastly used to 
estimate the base of sedimentary basins 
(Silva et al., 2014 and references therein). 
Due to the non-linear relationship of 
gravity and depth, the inverse problem of 
inverting the gravity data for depth is 
nonlinear. Classically, deterministic local 
searches, such as Levenberg–Marquardt 
(LM) or Gauss–Newton (GN), have been 
employed to solve the non-linear inverse 
problem (e.g. Zeyen and Pous, 1993; 
Čuma et al., 2012). Although, these local 
searches converge very fast, they have a 
number of disadvantages mostly due to 
the ill-posedness of the nonlinear gravity 
inverse problem. On the one hand, these 
methods begin their search at an arbitrary 
initial model and then improve it 
iteratively. As a result, the solutions of 
these methods highly correlate with the 
quality of the initial model (also called 
initial guess). This could be highly 
problematic since these methods are 
based on local search algorithms, hence if 
the proper initial model is not chosen, 
they could easily get stuck in local 
minima caused by non-uniqueness. In 
addition, the improvement of the solution 
at each iteration is done by calculating 
the first derivatives of the objective 
function with respect to model 
parameters. This could result in extra 
calculations since it might not always be 
possible to calculate the derivatives 
analytically. On the other hand, since the 
data contain noise, it is not only 
impossible to find an exact solution for 
the inverse problem, but also such 
solution is not desired because an exact 
solution would be one that has been 
found by inverting the noise contained 
within the data.  

Globally available potential field data 
offer valuable information about the 
Earth’s interior especially at crustal 
scales (e.g. Aitken et al., 2013). Gravity 
method is a suitable alternative for 
seismic methods in regions of sparse data 
coverage (Grad and Tiira, 2012). In 
addition to low data coverage, various 
factors such as crustal anisotropy, 
different model parameterization or 
different inversion techniques could also 
change modelling results of different 
seismic methods including refraction and 
reflection methods and receiver function 
(RF) analyses (Grad and Tiira, 2012; 
Mutlu and Karabulut, 2011). As a 
stochastic global method, the Particle 
Swarm Optimization (PSO) is an 
excellent minimizer for the non-linear 
gravity inverse problem, since its solution 
does not rely on an initial guess. 
Moreover, PSO performs fairly well 
without the use of explicit a priori 
information, and hence, when used with 
satellite gravity data, could be a strong 
method in regions with low seismic data 
coverage. 

Recently, approximation algorithms or 
metaheuristics have been used as 
alternatives to the LM and GN methods. 
Metaheuristics are designed to solve hard 
optimization problems which are those 
problems for which finding an exact 
solution is not possible in limited times 
(Gonzalez, 2007; Sen and Stoffa, 2013). 
Evolutionary Algorithms (EAs), 
Simulated Annealing (SA), and Swarm 
Intelligence Algorithms (SIAs) are 
among well-known metaheuristics of 
which EAs and SIAs are referred to as 
population-based algorithms. EAs are 
inspired by Darwinian Evolutionary 
theory (Gould, 2002) wherein a 
population of “genes” (possible solutions 
to the problem) compete to survive. 
Genetic algorithm and evolution 
strategies are among the most well-
known EAs (Bäck and Schwefel, 1993; 
Bäck, 1996). Similarly, in SIAs a 
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population is in search for the best 
solution with one important difference. In 
SIAs, instead of competing, the 
population collaborates to find the best 
solution. Ant colony optimization 
(Dorigo et al., 1996) and PSO (Eberhart 
and Kennedy, 1995) are the two most 
well-known families of SIAs. 

Ant colony optimization has been 
recently used to solve the inverse 
problem of inverting the potential field 
data (Liu et al., 2014). The PSO has also 
been used in a number of geophysical 
inverse problems including Vertical 
Electric Sounding (VES) and 
magnetotelluric (Shaw and Srivastava, 
2007), self-potential (Monteiro Santos, 
2010), and a 2D analytical signal of 
magnetic anomalies (Srivastava and 
Agarwal, 2010). However, up to now, the 
PSO has not been used in gravity studies 
at crustal scales. 
 
 
2    Particle Swarm Optimization 
The PSO is a stochastic global search 
method which belongs to the family of 
SIAs (Kennedy et al., 2001). Inspired by 
the social behavior of real swarms, the 
PSO performs its search for the global 
minimum by means of a set of particles 
within the bounds of a pre-defined search 
space (Eberhart and Kennedy, 1995). The 
expression “social behavior of real 
swarms” refers to the way by which the 
members of the swarm collaborate in 
time with the aim of finding food. As the 
time goes by, those possible places where 
food might exist are memorized by those 
individuals who have found them. Then, 
other members are notified through 
communication and change their 
direction towards those places. This 
description is in fact quite simplified and 
probably inaccurate. Formally, in 
biology, this process is called self-
organization (Garnier et al., 2007) which 
is described as a set of dynamic 
mechanisms taking place within the 

lower levels by which the structures at 
global levels are controlled without any 
explicit coding on individuals. Self-
organization is the primary difference 
between swarm intelligence algorithms 
and evolutionary algorithms. In the latter, 
the explicit coding on the individuals is 
done via a set of operators such as 
mutation and/or selection (e.g. see 
Angeline, 1998). In PSO, each particle is 
characterized by its position in the search 
space. That position is in fact a potential 
solution to the optimization problem. In 
the beginning of the search, the positions 
of the particles are set randomly within 
the bounds of the search space.  

In order to be able to present the 
mathematical formulas of PSO, a few 
terms have to be defined first. In doing 
this, without any loss of generality, a one-
dimensional minimization problem is 
assumed. The search space is defined as 
an arbitrary interval such as  , ⊂ℛ in which the global minimum of f(x) is 
located. The global best position (Gbest) until iteration K (that is until t=K) 
amongst the swarm is defined as: 
 =     ( ) <

  ∀  ,  ,   (Definition 1) 
 
where  = 1, 2, … , and = 1, 2 , …  
with N being the swarm size (i.e. the 
number of particles in the swarm). It is 
apparent from Def. 1 that at any time 
during the PSO search, there is only one 
global best position which has yielded the 
best result (i.e. the lowest obtained value 
for the objective function) until that time. 
Similarly, a personal best position (  ) is also defined for each particle in the 
swarm as: 
 =     ( ) <( )  ∀  ,  .   (Definition 2) 
 

In addition to position, each particle 
also has a velocity at each time which is 
the distance that a particle should travel 
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for the next iteration (i.e. in 1 second) to 
get to its next position. The velocity 
update equation of each particle is given 
as (Shi and Eberhart, 1998): 
 

=   . +  .  −
 +    .  , −  .             (1) 
 
And hence, the update equation for the 
position of the particles would become 
(Shi and Eberhart, 1998): 
 

=  +  ,                             (2) 
 
where  and  are the position and 
velocity of particle i at iteration k 
respectively,  is called the inertia 
weight, k is the current iteration, 
i=1,2,…,N indicates the ith particle with 
N being the swarm size,  &  ∈(0 … 1)  are random numbers chosen 
uniformly, and finally  &  are called 
social and cognitive coefficients 
respectively (also called acceleration 
coefficients). 

In eq. (1), the subtractions are 
probably best interpreted in terms of 
calculating a distance between a particle 
current position ( ) and the global (the 
second term in the right hand side of eq. 
(1)) or personal (the third term) best 
positions. These distances would indicate 
how far a particle is actually located from 
these best positions. If these distances are 
small, then the velocity would be small, 
meaning that the particle is probably 
somewhere near the global best solution. 
However, the random numbers, along 
with 1c  and 2c  give weights to these 
distances. The first term on the right-hand 
side of eq. (1), which is the velocity from 
the last iteration, also makes sure that the 
direction of a particle toward its next 
position is also based on previous global 
and personal best positions which help to 
escape local minima.  

3    Inversion 
Solving a non-linear inverse problem is 
comprised of two stages: formulating an 
objective function by defining a forward 
problem, and minimizing that objective 
function with respect to the desired 
model parameters by imposing necessary 
constraints. In the first stage, the 
continuous physical space has to be 
discretized since the data are usually 
discrete. In the second stage, a minimizer 
is used to find the best solution for the 
problem, i.e. one that minimizes the 
objective function best. The objective 
function consists of a data misfit term in 
addition to smoothing terms. The data 
misfit (MF) is the difference between the 
data calculated by candidate solutions 
and the actual observed values. From a 
mathematical point of view, the general 
forward problem could be defined as: 
 

= ( ) ,                                            (3) 
 
where d  is the vector containing the data 
(knowns), m  is the vector of model 
parameters (unknowns), and f  is the 
non-linear physical relationship between 
d and m . In the case of gravity ( g ) and 
depth (z), eq. (1) could be rewritten as: 
 = ( ) ,                                             (4) 
 
where f depends on the way that the 
discretization of the underground space is 
carried out. In fact, the discretization 
could be performed in various schemes 
based on the needs of the problem. The 
discretization divides the physical 
underground space into a set of 
compartments where each one is 
associated with a model parameter. On 
the one hand, the number of the 
compartments determines the number of 
the required calculations and 
consequently the time needed for the 
inversion. On the
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other hand, the number of the 
compartments is actually the number of 
the model parameters, hence it should be 
set by some care in order to avoid the 
inverse problem becoming under-
determined, i.e. when the number of the 
unknowns is greater than the number of 
the knowns, which causes ill-posedness 
(Zhdanov, 2002). In addition, the 
discretization also has to consider 
realistic situations. For instance, in 
inverting Bouguer anomalies at crustal 
scales, assuming a constant density for 
the crust is rather unrealistic due to both 
lateral and vertical density variations 
within the crust. As a result, one has to 
take into account these considerations. 
Although there are a number of analytical 
relations for the vertical density 
variations of the crust, there is not an 
established relation for the lateral density 
variations of the crust since they have 
rather anomalous sources. For instance, 
in sedimentary basins, an exponential or 
quadratic relation is usually assumed for 
the vertical density variations (e.g. Rao et 
al., 1995; Rao, 1990; Cordell, 1973). 
However, at crustal scales a linear density 
gradient is more customary (e.g. 
Motavalli-Anbaran et al., 2016; Afonso et 
al., 2008). It has been shown that for the 
same average crustal densities, the 
gravity effects of a linear gradient crustal 
model and an exponential one do not vary 
greatly (Motavalli-Anbaran et al., 2013). 

Hereby the underground space is 
divided into a set of right rectangular 
prisms with a linear density gradient. 
Each data point is associated with one 
prism, and hence the number of model 
parameters and the data are equal. 
Gallardo-Delgado et al. (2003) give the 
analytical formula for the vertical 
gravitational attraction of a right 
rectangular prism in the Cartesian 
coordinates with linear density gradient 
as: 
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 (5) 

G = Universal gravitational constant (6.6726 × 
10-11),  
where  is the density at the top and  is 
the rate with which the density increases 
with depth. Eq. (5) calculates the gravity 
effects of one right rectangular prism on a 
single observation point. The model 
parameters in the inversion are therefore 
the thicknesses of the prisms. Assuming 
that the observed Bouguer anomalies are 
solely comprised of the contributions by 
the considered area, each observed 
Bouguer anomaly would be the sum of 
the gravity effects of all prisms at that 
observation point. Thereby, the data 
misfit term in the objective function 
should be minimized in a least-squares 
sense in order to find the global 
minimum, i.e. the true set of the 
thicknesses of the prisms. The final 
objective function could be written as: 
 

( ) =   ∑ ∑ +
 ∑ − +
 ∑ ( ) .                              (6) 
 Eq. (6) is non-linear in which the first 
term in the right hand side is the data 
misfits. The second term is the smoothing 
term, in which , called the stabilizing 
parameter (km-2), controls the importance 
of the smoothing term. The last term is 
for explicit a priori information in which 

 is called the damping factor and is
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nonzero for points where a priori 
information are used. Also  is the 
corresponding uncertainty of the 
independent a priori information which 
incorporates a sense of reliability of the a 
priori information used into the 
calculations. In eq. (6), ( ) is 
dimensionless and is the final objective 
function that has to be minimized. 

Instead of the usual matrix forms 
which are customary in geophysical 
inverse problems, Eq. (6) is expressed in 
a term by term manner since using PSO 
for finding the best set of z which 
minimizes ( ) involves neither 
calculating a Jacobian matrix nor any 
matrix inversions. 
 
 
4    Synthetic tests 
In order to test the ability of PSO in 
solving the non-linear problem of 
inverting Bouguer anomalies for depth, a 
realistic 2D synthetic crustal model with 
an average thickness of ~30 km was 
defined. The length of the defined profile 
is 600 km along which there are two 
crustal thickenings where the Moho 
reaches depths of 42 km and 50 km. By 
assuming a linear vertical density 
gradient, the “observed” data are 
calculated by means of eq. (5) on equally 
spaced observation points (Figure 1).  

 Figure 1. The discretization of the underground 
space is carried out via a set of right rectangular 
prisms with linear density gradient. 

The synthetic tests are performed both 
with and without the presence of white 
Gaussian noise. Since PSO is a stochastic 
method, its results are not the same upon 
repetition, or in other words, in two 
repetitions of PSO, the movements of the 
particles are not along the same path in 
the search space due to the use of random 
numbers in eq. (1), and therefore the 
results are not necessarily the same. 
Hence, it is necessary to repeat the search 
for an optimum number of times before 
selecting the final solution. Hereby, based 
on our experiments, the minimization is 
repeated 30 times for each case. Figure 2 
shows the results for the data without 
noise. The relative error of the calculated 
solution is shown in the bottom panel. 
With the exception of border points, the 
majority of the estimated depths have a 
relative error below 2%. The high relative 
error of the estimated depths at the two 
ends of the profile may be due to the lack 
of required information at those 
observation points. This issue is even 
more problematic in the case of real data 
where the physical space with a 
continuous nature is discretized in the 
form of a profile. Although the modeling 
procedure assumes that the observed 
Bouguer anomaly is completely caused 
by the region enclosed in the profile (e.g. 
the 2D cross section in Figure 1), in 
reality this value is partly made by 
contributions of the outside area. This 
issue is addressed in the next section. 

The results of the tests on synthetic 
data, contaminated with 3% white 
Gaussian noise (WGN), is shown in 
Figure 3. In using PSO as a minimizer, 
the uncertainties of the solutions cannot 
be calculated directly. In order to 
calculate the uncertainty of the depths, all 
the solutions throughout the 30 
repetitions of the runs are saved, where 
for each solution the corresponding WGN 
is regenerated independently, and the 
standard deviation of all 30 solutions are 
calculated and stored as a vector σ. 
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Hence, the length of σ is equal to the 
number of the defined blocks (i.e. the 
number of model parameters). In the 
bottom panel of Figure 3, the vector 2σ is 
presented as the uncertainty of the 
solutions. In addition to the 
aforementioned differences between PSO 
solutions due to its stochastic nature, in 
working with real data this scheme for 
calculating uncertainty also yields a sense 
of reliability of the method upon slight 
changes in the initial parameters of the 
inversion such as the assumed densities at 
the top and bottom, the maximum 
number of PSO iterations, the number of 
particles in the swarm (i.e. swarm size), 
etc. (see also Motavalli-Anbaran et al., 
2013; 2016 for a discussion on 
calculating the uncertainty).  

  
Figure 2. (a) The calculated and observed 
Bouguer anomalies. (b) Reconstructed and true 
models. (c) The relative error of the reconstructed 
model.  

Based on the results presented in 
Figures 2 and 3, it can be concluded that 
PSO has been successful in solving the 

non-linear inverse problem of inverting 
Bouguer anomalies for the depth of 
Moho boundary. Finally, Table 1 shows 
the PSO parameters used for the 
inversion.  
 

  Figure 3. (a) The calculated and observed (with 
3% white Gaussian noise) Bouguer anomalies. (b) 
Reconstructed and true models. (c) The relative 
error of the reconstructed model. The legend is 
the same as in Figure 2.  
Table 1. The parameters used for the synthetic 
tests. The acceptable interval for the smoothing 
factor is found by trial and error.  
 

C1 C2 Swarm Size Max 
Iteration 

Smoothing 
factor 

1.5 2 250 100-150 0.00075 to 
0.01 

 
 
5    Real data 
Although the synthetic tests in section 4 
assessed the ability of PSO in solving the 
non-linear gravity inverse problem, its 
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performance has to be compared with 
other geophysical methods. For this, in 
this section, we use real data to find the 
lateral variation in the depth to the base 
of crust along a profile and compare our 
results with the results of seismic 
tomography and integrated geophysical 
modeling.  

The Zagros Mountains (Figure 4) are 
formed by opening and closure of the 
Neo-Tethys oceanic realm (Alavi, 1994). 
The tectonic evolution and seismo-
tectonics of Zagros have been extensively 
studied in the last few decades (e.g. 
Berberian, 1995; Al-Lazki et al., 2004; 
Hatzfeld et al., 2003; Hafkenscheid et al., 
2006; Al-Lazki et al., 2014; Dewey et al., 
1986). The Zagros is comprised of three 
almost parallel tectonic settings which are 
extended from northwest to southeast, 
namely Zagros Fold and Thrust Belt 
(ZFTB), Sanandaj–Sirjan Zone (SSZ), 
and Urmia–Dokhtar Magmatic 
Assemblage (UDMA) (Alavi, 1994). The 
highest topography is in the Main Zagros 
Thrust (MZT), which marks the 
continental collision of Eurasian–Arabian 
plates (Barazangi et al., 2006 and 
references therein). The lithospheric 
structures of Zagros have been studied 
using various geophysical methods (e.g. 
Molinaro et al., 2005; Manaman et al., 
2011; Al-Lazki et al., 2014; Motavalli-
Anbaran et al., 2011). In particular, the 
crustal structure of Zagros has been the 
subject of various studies for a long time. 
Using the data from a 620 km long array. 
Paul et al. (2006) found an average 
crustal thickness of ~50 km in Zagros 
with a relatively short wavelength 
thickening beneath the SSZ where Moho 
reaches the depth of 70 km. Later, 
Manaman and Shomali (2010) 
investigated the upper mantle structure 
and Moho depth variations along the 
same profile and found an average ~45 
km thickness for the crust with a 
thickening beneath ZFTB and SSZ. 
Motavalli-Anbaran et al. (2011) 

integrated gravity, geoid, and topography 
data in a forward modeling procedure 
along three SW-NE profiles, amongst 
which, the first half of profile III 
coincides with the ones from 
aforementioned works. Their results 
revealed that, on average, the base of the 
crust lies at a depth of ~55 km beneath 
Zagros. However, contrary to the reports 
of Paul et al. (2006), Motavalli-Anbaran 
et al. (2011) found a much smoother 
thickening beneath the MZT where the 
topography is the highest. Finally, they 
concluded that, based on the fits of both 
gravity and geoid, the crustal model of 
Manaman and Shomali (2010) has a 
better chance to be closer to reality.   

 

 Figure 4. (a) Topography of Iran. (b) The map of 
Bouguer anomalies for Iran. The red line depicts 
the profile used for the Zagros  
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Herein, PSO is used to estimate the 
depth to the base of crust in Zagros 
mountains (Iran) along the same profile 
as in Paul et al. (2006). The gravity data 
(Figure 5) are extracted from EIGEN 6c4, 
a combined high-resolution global 
gravity model including GOCE data up to 
degree and order 2190 (
2014). Prior to the calculations, the data 
were stacked over a total 1
envelope, and then filtered using a 150 
km low-pass Gaussian filter to eliminate 
shallow and short wavelength effects (see 
Gómez-Ortiz et al. (2011)
discussion on choosing the cutoff 
wavelength). In addition, the gravity 
signature of density variations deep 
within the upper-mantle was also 
calculated from EGM2008 (
2012) by considering degrees up to 30 
(suggested by Corchete et al.
subtracted from the regional Bouguer 
anomalies. Usually, this last step is not 
necessary due to the fast decay of gravity 
with distance (i.e.  ∝ ) 
by Motavalli-Anbaran et al
However, recent studies have revealed a 
lithospheric thinning beneath the MZT 
via modeling of potential field data where 
the base of lithosphere reaches a depth of 
~170 km (Molinaro et al., 2005
well apparent in the Bouguer

For calculating the forward problem, 
the temperature at the base of the crust 
was assumed to be 800 °C which results 
in a density contrast of 
between the lower crust and upper mantle 
 
 

 Figure 5. The stacked Bouguer anomaly along the selected profile. The origin is located on MZT. See Figure 
6 for the filtered data. 
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Herein, PSO is used to estimate the 
depth to the base of crust in Zagros 
mountains (Iran) along the same profile 

. The gravity data 
(Figure 5) are extracted from EIGEN 6c4, 

resolution global 
gravity model including GOCE data up to 
degree and order 2190 (Förste et al., 

). Prior to the calculations, the data 
were stacked over a total 1-degree 
envelope, and then filtered using a 150 

pass Gaussian filter to eliminate 
avelength effects (see 

(2011) for a 
discussion on choosing the cutoff 
wavelength). In addition, the gravity 
signature of density variations deep 

mantle was also 
calculated from EGM2008 (Pavlis et al., 

g degrees up to 30 
Corchete et al., 2010) and 

subtracted from the regional Bouguer 
this last step is not 

necessary due to the fast decay of gravity 
 as is suggested 

Anbaran et al. (2013). 
However, recent studies have revealed a 
lithospheric thinning beneath the MZT 
via modeling of potential field data where 
the base of lithosphere reaches a depth of 

, 2005), which is 
well apparent in the Bouguer data. 

calculating the forward problem, 
he temperature at the base of the crust 

was assumed to be 800 °C which results 
in a density contrast of -317 kg/m3 
between the lower crust and upper mantle 

based on the values suggested by 
Motavalli-Anbaran et al
density at the surface is assumed to be 
467 kg/m3 with a linear density gradient 
crustal model. In order to overcome the 
aforementioned difficulties with the 
observation points at the two ends of the 
profile (see section 4), two strategies 
were adopted. First, the actual profile, on 
which the calculations are carried out, 
was extended in both directions. Second, 
the last block at each end was also 
artificially extended as suggested by 
Afonso et al. (2008)
presented results are only for a 
long profile with the origin at the MZT.

The parameters used in the inversion 
are presented in Table 2. The calculations 
were repeated 30 times
are presented in Figure 6. The average 
calculated depth to the base of the crust is 
~ 54 ± 3 km. Results also show a 
thickening beneath the MZT where the 
topography is the highest where Moho
depth reaches ~ 60 km. As can be seen, 
the solutions agree with the ones from 
Manaman and Shomali
Motavalli-Anbaran et al
the estimated Moho depth in the 
easternmost part of the profile is greater 
than the previous works. This 
probably due to an over
density contrast between the crust and the 
lithosphere mantle since the same density 
contrast is used along the profile in the 
calculations. The results of recent Pn 
tomography (Al-Lazki et al

The stacked Bouguer anomaly along the selected profile. The origin is located on MZT. See Figure 
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based on the values suggested by 
Anbaran et al. (2011). The 

density at the surface is assumed to be -
with a linear density gradient 

crustal model. In order to overcome the 
aforementioned difficulties with the 
observation points at the two ends of the 
profile (see section 4), two strategies 

d. First, the actual profile, on 
which the calculations are carried out, 
was extended in both directions. Second, 
the last block at each end was also 
artificially extended as suggested by 

(2008). However, the 
presented results are only for a 400 km 
long profile with the origin at the MZT. 

The parameters used in the inversion 
Table 2. The calculations 

were repeated 30 times, and the results 
are presented in Figure 6. The average 
calculated depth to the base of the crust is 
~ 54 ± 3 km. Results also show a 
thickening beneath the MZT where the 
topography is the highest where Moho 
depth reaches ~ 60 km. As can be seen, 
the solutions agree with the ones from 
Manaman and Shomali (2010) and 

et al., 2011. However, 
the estimated Moho depth in the 
easternmost part of the profile is greater 
than the previous works. This is most 
probably due to an over-estimation of the 
density contrast between the crust and the 
lithosphere mantle since the same density 
contrast is used along the profile in the 
calculations. The results of recent Pn 

Lazki et al., 2014),

 
The stacked Bouguer anomaly along the selected profile. The origin is located on MZT. See Figure 
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Table 2. The parameters used for the inversion of real data. The densities at both the surface and the bottom 
of the crust were varied within a 50 kg/m3 interval.  
 

C1 C2 Swarm Size Max Iteration Smoothing factor ∆  (kg/m3) ∆  (kg/m3) 
1.5 2 250 100-150 0.0075 to 0.01 [-433 to -467] [-283 to -317] 

 
 
higher S velocity (Manaman et al., 2011), 
and higher vertical integral of the 
lithospheric strength (Motavalli-Anbaran 
et al., 2011) also suggest that the Arabian 
foreland (south of MZT) may have a 
higher density than the Eurasia part 
which would result in a smaller density 
contrast.  
 

 
  

Figure 6. The inversion results for the Zagros 
Profile. (a) Calculated and observed Bouguer 
anomalies (b) Reconstructed and the results of 
previous works. (c) The uncertainty of the 
reconstructed model. The legend is the same as in 
Figure 2. A: crustal model by Paul et al. (2006); 
B: Motavalli-Anbaran et al. (2011); C: Manaman 
and Shomali (2010).  

The lower panel in Figure 6 shows the 
uncertainty of the solutions, which is on 
average ~3 km. It should be noted that 
gravity is generally a low-resolution 
method, and a 4~5 km uncertainty is 
customary (Grad and Tiira, 2009). 
Finally, it is noteworthy that the 
constraining of the solutions was carried 
out without the use of any explicit a 
priori information (in eq. (6), = 0 for 
all of the blocks). Also, the smoothing 
factor in eq. (6) was found by trial and 
error. Based on the presented results, 
PSO has been able to give satisfactory 
solutions. 
 
 
6    Conclusions 
We used PSO to solve the non-linear 
problem of inverting gravity data for 
depths to the base of the crust in the 
Zagros Mountains. Our results are in 
good agreement with results of previous 
seismic works. Thereby, metaheuristics 
and PSO in particular seem to be reliable 
alternatives for deterministic local search 
methods, especially in regions with 
sparse seismic data coverage.  
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