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 Abstract 
Subsurface rocks and their fluid content along with their architecture affect reflected 
seismic waves through variations in their travel time, reflection amplitude, and phase 
within the field of exploration seismology. The combined effects of these factors make 
subsurface interpretation by using reflection waves very difficult. Therefore, assistance 
from other subsurface disciplines is needed if we intend to make a more accurate image of 
the subsurface. In this regard, rock physics acts as an integrated tool to combine subsurface 
information from different disciplines in a set of relationships between engineering 
(petrophysical) properties and their relevant geophysical variations, or more specifically, 
elastic variations. As a matter of fact, rock physics is required for a better understanding of 
rock properties if we intend to have a full understanding of our reservoir properties and 
their fluid content. This paper reviews some of the most important rock physics models 
and their application within the field of seismic exploration. These models are generally 
valid for the given conditions in which they are derived, and as a result, having a good 
understanding of their physical and geological limitations can help a lot with accurate rock 
physics modeling and interpretation. In this regard, this paper is an attempt to create a 
better understanding of such models, using different references and my personal 
experiences with these models. The application contexts of the models presented in this 
paper are not limited to the discussed scenarios. These scenarios are the ones that are 
commonly used and have shown a good prediction power in practice. 
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1    Introduction 
Rock physics science has been rapidly 
evolving during the last few decades, 
from a theoretical science into a more 
practical approach (discipline) to address 
some of the most important subsurface 
problems. These developments in 
studying physical properties of minerals 
and fluids under different environmental 
conditions (like pressure and 
temperature) make it possible to find 
more accurate relationships for the 
purpose of interpreting and modelling 
desired scenarios within the field of 
geophysics, especially in seismic 
exploration and seismology. Between 
different disciplines in geophysical 
studies, seismic studies which work in the 
elastic domain are the most popular, and 
this is why most of rock physics studies 
and developments are focused on 
disciplines that work in elastic wave 
domains. This is also the main reason 
why rock physics models are sometimes 
referred to as petroelastic models (PEM) 
instead of rock physics models. The goal 
of these petroelastic model is to 
understand how lithology, porosity, 
confining stress and pore pressure, pore 
fluid type and saturation, anisotropy and 
degree of fracturing, temperature, and 
frequency influence the velocities and 
attenuation of compressional P- and S-
waves in sedimentary rocks and vice 
versa (King, 2005). These relationships 
or models could have different sources, 
from laboratory experiments to 
theoretical principles, and combine 
concepts and principles from geology, 
geophysics, petrophysics, applied 
mathematics, and other disciplines 
(Sayer, 2013). There are lots of different 
rock physics relationships for various 
scenarios given in different sources (e.g. 
Voigt, 1890; Reuss, 1929; Gassmann, 
1951; Hill, 1952; Biot, 1956; Hashin and 
Shtrikman, 1963; Berryman, 1980a; 

Berryman, 1980b; Hudson, 1980; Digby, 
1981; Eberhart-Phillips, 1989; Krief et 
al., 1990; Greenberg and Castagna, 1992; 
Batzle and Wang, 1992; Brie et al., 1995; 
Ciz and Shapiro, 2007; Xu and Payne, 
2009) which could potentially make 
modeling difficult without pre-knowledge 
of their assumptions and applicability. 

Avseth et al. (2005) divided rock 
physics models into three general classes 
named as theoretical, empirical and 
heuristic models. This classification 
makes a clear distinction between the 
sources of different models and how they 
are derived. However, a closer look into 
general rock physics modeling workflows 
and procedures makes it clear that this 
classification needs to be modified for 
practical purposes. For a more practical 
application, rock physics models can be 
divided into (1) pore fluid models, (2) 
theoretical models, (3) empirical and 
heuristics models, and (4) hybrid models. 
This classification reflects the necessary 
steps needed in an actual rock physics 
modeling procedure. In this paper, I will 
describe each of these groups and will 
present some of the most important 
models in each category and their usual 
application for seismic exploration and 
seismic reservoir characterization 
purposes. Such models are used quite 
commonly, and can assist with 
interpretation of the observed subsurface 
elastic properties. The common practice 
in rock physics modeling is to model 
fluid and solid separately and then 
combine them together using relevant 
models. The fluid models which will be 
discussed first are commonly derived 
empirically under certain conditions in 
the laboratory. These relationships are 
then extrapolated to fit reservoir 
conditions. This is followed by modeling 
minerals and dry rocks, and finally by 
introducing modeled fluid inside the 
rock. The following contents are 
organized to reflect this procedure which 
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could, furthermore, help with building a 
rock from its constituents.    
2    Rock physics models 
In order for a better understanding of 
rock physics models, we need to classify 
them based on their derived origin which 
could be done into 4 different categories 
as (1) pore fluid models, (2) theoretical 
models, (3) empirical and heuristics 
models, and (4) hybrid models. In the 
following section, these groups will be 
discussed in more details. 
 
2.1   Pore fluid models 
Finding hydrocarbon (oil and/or gas) 
within a subsurface reservoir is one of the 
main goals for exploration seismology 
and seismic reservoir characterization. It 
is expected that seismic can be used to 
map pore fluid changes, along with their 
type and distribution, within a given 
reservoir. This elastic discrimination is 
based on different compressibility 
contrasts for pore fluids in the reservoir. 
It indicates that advanced knowledge 
about the compressibility of different 
pore fluids can help to delineate various 
pore fluid distributions. There are 
different empirical relationships such as 
Batzle and Wang (1992) in which elastic 
properties of the commonly encountered 
pore fluids in petroleum reservoirs are 
empirically estimated. These correlations 
which are widely used in the oil industry, 
calculate fluid elastic properties for an 
individual phase when environmental 
conditions (like temperature and 
pressure) or even fluid composition (like 
Gas-Oil-Ratio) are changed. In normal 
practice, you need to model each phase of 
the pore fluid within your reservoir (or 
along the well path in case of 
petrophysical interpretation) by changing 
pressure and temperature using one of the 
fluid models like Batzle and Wang 
(1992) equation. However, reservoir 
pores are normally filled with two or 

three fluids. This condition, which is also 
referred to as partial saturation, can 
happen either as homogenous or non-
homogeneous (patchy) saturation which 
in turn depends on how the elastic waves 
are measured (ultrasonic, sonic or seismic 
measurements). The next step of your 
fluid modeling would be to mix different 
fluids together in order to make one 
effective fluid. Brie et al. (1995) 
suggested an empirical equation for 
mixing different fluids together. This 
equation is given by: 
   e

mix brine gas w gasK K K S K ,                  (1) 
 where K refers to the bulk modulus and 
indices brine and gas relate bulk modulus 
to either of these fluids, and Sw is water 
saturation. The exponent e is an empirical 
constant ranging between 1 and 40.  It 
should be calibrated to fit experimental 
data. When e = 1, Brie's formula is the 
same as the Voigt (1928) model, and the 
mixture shows the highest stiffness 
(patchy saturation). As e increases, the 
patchy saturation nears the characteristics 
of uniform saturation and nears a nearly 
uniform saturation at e = 40 which is 
equal to the Reuss (1929) model (which 
is also called Wood's equation). Gurevich 
and Lopatnikov (1995) and Pride et al. 
(2004) showed that patchy-saturation is 
probably the dominant fluid mixing 
scenario in reservoirs at low frequencies, 
and a normal fluid mixture is located 
between these two boundaries. Therefore, 
using Brie et al. (1995) with e = 3 to 6 is 
normally suggested for fluid mixing in 
conventional reservoirs. 
 
2.2   Theoretical models 
Theoretical models are primarily 
continuum mechanics approximations of 
the elastic or poroelastic properties of 
rocks. Elastic theories do not consider 
rocks as porous media but just as one 
elastic medium, however a real rock is a 
porous media consisting of a solid and 
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fluid. Therefore, poroelasticity, which is 
a continuum theory for the analysis of 
porous media (an elastic matrix 
containing interconnected fluid-saturated 
pores) is a better representative for 
describing subsurface rocks. The most 
frequently used model to describe 
poroelasticity processes in fluid-saturated 
porous materials is the Biot (1956) 
model. The Biot model is a high-
frequency model which is equal to the 
Gassmann (1951) model for low 
frequencies. It predicts a frequency-
dependent velocity in terms of dry rock 
properties, and accounts for the fluid 
flows caused by seismic wave 
propagation. When a seismic wave passes 
through a porous rock, two fluid flows 
are induced in the rock microstructure 
named as global (i.e. relative motion of 
the fluid and solid) and squirt flows (i.e. 
fluid movement from compliant cracks to 
stiff pores). The squirt flow which is 
more important in rocks with different 
pore stiffness is not included in the Biot 
model, and as a result, Biot model 
normally overpredicts velocities to some 
degree depending on the rock 
microstructure (Mavko, 1998). Therefore, 
different attempts have been made to 
include squirt flow into the Biot model 
like Biot–squirt (BISQ) model developed 
by Dvorkin and Nur (1993). This model 
accounts for both seismic wave induced 
fluid flows and attempted to modify Biot 
velocity for the squirt flow. 

In general, theoretical models can be 
divided into (a) bound models, (b) 
inclusion based theories, (c) contact 
models, (d) transformations, and (e) 
computational models (Avseth et al., 
2005). Below, each of these groups will 
be discussed briefly. 
 
2.2.1  Boundary models 
Boundary models define the range in 
which maximum and minimum elastic 
properties of a given rock can physically 
exist. Possible upper and lower elastic 

bounds can be predicted by knowing only 
the elastic moduli and their volume 
fractions for each constituent of the rock. 
The most common boundary models are 
Reuss (1929) and Voigt (1928) which 
model the lowest and highest possible 
bounds for mixing different minerals and 
fluids together. Reuss (1929) and Voigt 
(1928) models can be defined as: 
 

1 NN
i iiM M ,                                   (2) 

 where Mi and vi are the elastic modulus 
and volume fraction for the ith constituent 
of the rock. N = 1 and -1 will give the 
Voigt (1928) and Reuss (1929) models, 
respectively. Normally the average of 
these two models, which is named as Hill 
(1952), is suggested for mixing different 
minerals together. Then, the Hill (1952) 
model can be defined as: 
 

1
i i i ii iM MM .2

                      (3) 
 Another commonly used boundary 
model is Hashin–Shtrikman (1963). This 
model assumes a different geometry 
compared with the Voigt and Reuss 
model and predicts a narrower bound 
between minimum and maximum elastic 
properties. Figure 1 compares these two 
bound models with each other and with 
their Hill (1952) average. 

The range between the maximum and 
minimum velocity boundaries can also be 
reduced by applying the concept of 
critical porosity developed by Nur et al. 
(1995). Critical porosity is the porosity at 
which sediments are formed and all 
grains are in contact with each other. 
From the rock physics point of view, this 
porosity is the border between the solid 
load bearing (lower than critical porosity) 
and the fluid load bearing (higher than 
critical porosity) of a rock. In critical 
porosity models, critical porosity is 
assumed instead of the fluid point (=1), 
and this assumption makes the solution 
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area narrower (refer to Mavko et al., 
1998). If we want to predict the effective 
elastic properties more specifically, 
where effects of various geometric details 
of the constituents are considered (grains 
and pores), we need more advanced 
models like inclusion-based theories.  

 Figure 1. Comparison between boundary models 
and their Hill average. It shows that Hashin–
Shtrikman (1963) boundaries are narrower than 
Voigt (1928) and Reuss (1929) bounds (Mavko et 
al., 1998).  
2.2.2  Inclusion-based theories 
Inclusion-based theories model wave 
velocity and attenuation based on 
scattering theory and approximates the 
rock as an elastic block of mineral 
perturbed by holes (porosity). They 
generally require the volume fraction of 
the constituents and physical and 
geometrical properties of the constituents, 
alone and relative to each other, for their 
solution. Various attempts have been 
made to account for the scattering effect 
of each inclusion. These solutions do not 
commonly depend on pressure and 
normal/tangential contact stiffness. They 
may consider the first order scattering 
term or the second and higher order 
scattering terms. The first order scattering 
solutions, such as Kuster and Toksöz 
(1974), does not account for pore to pore 
interactions. These interactions between 
pores are considered in the solutions with 
the second or higher order scattering 

terms such as differential equation 
medium (DEM) (Nishizawa, 1982), self-
consistent approximation (SCA) 
(Berryman, 1980a,b) and T-matrix 
(Jakobsen et al., 2003a,b). Therefore, first 
order scattering models, which are 
represented by the Kuster and Toksöz 
(1974) solution ((K*KT and *KT)) and are 
restricted to handling a dilute volume 
fraction of pores (lower porosity rocks), 
can be written as (Saberi, 2010):  
   

      
  
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 

                     


 (4) 

 
where K and μ are bulk and shear 
modulus, and m and i refer to the 
background and inclusion materials. xi is 
the volume fraction of inclusions 
summed over N different types of 
inclusion shapes. The coefficients Pmi and 
Qmi describe the effect of an inclusion of 
material i in a background medium m and 
are given in Kuster and Toksöz (1974) 
and Mavko et al. (1998). 

However, the second and higher 
orders scattering models allow for higher 
porosity rocks. The Differential Equation 
Medium (DEM) approach utilizes the 
principle of porosity growth to extend the 
results of the first order scattering 
solution (Kuster and Toksöz, 1974) to be 
valid at high porosities,  while Self-
Consistent Approximation (SCA) 
considers a uniform host material 
embedded with ellipsoidal inclusions 
(Berryman, 1980a,b). Both of these 
approaches simulate high-frequency 
saturated rock behavior and, therefore, 
are appropriate to apply to ultrasonic 
laboratory conditions. Furthermore, the 
visco-elastic effective medium theory of 
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Jakobsen et al. (2003a,b) (referred to as 
the T-matrix model) also takes into 
account global and local fluid flow, 
attenuation due to wave-induced fluid 
flow, anisotropy and various degrees of 
connectivity between pores. Therefore, it 
can handle modelling with complex 
situations (e.g. global and local fluid flow 
effects, different degrees of pore space 
connectivity, etc.) more accurately, but it 
has more unknown parameters to set and 
is more difficult to understand and 
calibrate. Lastly, Dræge (2006) combined 
the SCA and DEM in order to preserve 
connectivity between two mixing phases, 
and defined a new model named as 
CEMT (Combined Effective Medium 
Theory). CEMT first applies SCA for the 
volume concentrations between 40-60% 
and then DEM to preserve existing 
connectivity for each phase by changing 
their volume fractions. 

The definition of pore shapes is 
perhaps one of the most challenging 
parameters in the inclusion-based models. 
Pore shapes are approximated by a 
parameter called as ‘aspect ratio’, which 
is defined as the ratio of short to long axis 
in an ellipsoid (assuming all pore shapes 
can be approximated ideally by an 
ellipsoid). There are various methods for 
determining aspect ratio which provide a 
better representation of the actual pore 
structure in reservoirs such as methods 
based on thin sections, or crossplotting 
techniques, or even some algorithms to 
match aspect ratio to the measured 
velocities. However, none of these 
methods can be considered as the best 
approach to determine pore aspect ratio, 
and each of them has its own cons and 
pros. The most important consideration in 
any of these methods is that of overfitting 
the calculated aspect ratio. Sometimes the 
calculated aspect ratio is treated like a 
fitting parameter, and is updated to get 
the least minimum error with the 
measured velocities, regardless of other 
parameters that may cause the actual 

observed errors (this is quite common in 
calculating aspect ratios using velocities). 
 
2.2.3  Contact theories 
These models typically consider rock to 
consist of packed spheres, and 
approximate it as a collection of separate 
grains. Their elastic properties are 
determined by deformability and stiffness 
of their grain-to-grain contact. The final 
solution is derived based on fundamental 
results for the deformation of two spheres 
in contact. Contact models, such as Hertz 
and Mindlin (Mindlin, 1949), Digby 
(1981) and Walton (1987), are more 
suitable for high porosity unconsolidated 
(shallow) sands where mechanical 
compaction is the predominant process 
during diagenesis. Within contact theory 
models, the Hertz and Mindlin model 
(Mindlin, 1949) is commonly used for 
modeling unconsolidated sandstones and 
is also sensitive to pressure changes 
(Peff):  

 
 

   
 

1 322 2
0

eff eff22

1 322 2
0

eff eff22

C 1K P18 1 ,
3C 15 4 P5 2 2 1

 
 

    

                

   (5) 

 
where C, ν, μ0,  and Peff are 
coordination numbers (number of grain to 
grain contact point), Poisson's ratio, shear 
modulus of the grains, porosity and 
effective pressure, respectively. 

This model assumes that there is no 
slip at the interface of two spheres under 
shear, therefore, it over-predicts for shear 
velocity. This means that shear velocity 
computed using the Hertz and Mindlin 
model needs to be adjusted by a 
coefficient named as the slip factor (Deng 
et al., 2006) ranging between 0 and 1. 
Furthermore, Dvorkin and Nur (1996) 
added mineral cement at contact grains 
(in order to include cement into 
sediments like modeling in the chemical 
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compaction zone) into the models using 
two schemes named contact cement (all 
cement deposited at grain contacts) and 
coating cement (cement deposited in a 
uniform layer around grains) models. 
These models depend on the amount of 
contact cement and on the properties of 
the cement as well as the grains. These 
theories help with identifying which type 
of cement prevails in sediment. For 
instance, quartz and clay cements can be 
distinguished if other parameters are 
known. 
 
2.2.4  Transformation models 
These models aim to transform the 
known elastic response of a given rock in 
one state to another state. The most 
common scenario for such models is the 
fluid substitution problem in which the 
velocities of rock for in situ saturation are 
known and you are interested in 
calculating the same rock velocity filled 
with another fluid. Gassmann’s equation 
is the most important and widely used 
theory to solve the fluid substitution 
problem. This model is valid for 
homogenous rocks with connected pores 
at low frequencies. It is also assumed that 
there is no interaction between the fluid 
and solid and that hygroscopic fluid is 
part of the frame and is negligible. 
Gassmann predicts that shear modulus of 
the rock is not affected by fluid 
saturation, and bulk modulus of the 
saturated rock can be expressed as: 
 

 dry flsat
0 sat 0 dry 0 fl

sat dry

K KK
K K K K K K ,
 
      

   (6) 

 where Ksat, Kdry, Kfl and K0 are the bulk 
modulus for saturated rock, dry rock, 
fluid and mineral, respectively, and  
refers to the shear modulus of rock. Here, 
Kfl can be calculated using the Brie et al. 
(1995) equation if there are two or three 
fluids in the pores. 

Although Gassmann has many 
assumptions, in practice it works well in 
many cases and is a very popular model 
for fluid substitution studies. Gassmann 
is relatively free of pore geometry 
assumptions and this is the main reason 
that its application in carbonate is 
questionable! It can overpredict, 
underpredict or even correctly predict 
velocities in carbonates. This means that 
using Gassmann in carbonates should be 
undertaken with care, and all other 
conditions should be taken into account. 
The most applicable scenario for 
Gassmann is in siliciclastics where it can 
be used with more confident. Another 
important point to mention is the fact that 
in the presence of anisotropy in rocks, 
anisotropic Gassmann is a more suitable 
choice for modeling the effect of fluid 
and can be beneficial for carbonates. 
Moreover, Brown and Korringa (1975) 
generalized Gassman’s (1951) model for 
heterogeneous rocks, and furthermore, 
Ciz and Shapiro (2007) extended it for a 
solid that fills the pore space. Ciz and 
Shapiro (2007) model reads as: 
     

    

21 1
dry 01 1

sat dry 1 1 1 1
if dry 0

21 1
dry 01 1

sat dry 1 1 1 1
if dry 0

K KK K K K K K ,




       

 
 

   

 
 

   

            

 (7) 

 
where K and Kif are the bulk modulus of 
pore space and pore filling solid, and  is 
the porosity. The same indices on  refer 
to the relevant shear modulus. This model 
predicts shear modulus changes with 
changing pore fluid material (unlike 
Gassmann), and is recommended for 
fluids that show shear modulus to some 
extent, such as bitumen in heavy oil 
reservoirs (tar sands).  
 
2.2.5  Computational models 
With recent development in computer 
science, it is now possible to reconstruct 
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a three-dimensional rock image with 
complex pore structure using digital 
imaging and even mathematically (like 
numerical methods) calculate some of its 
properties such as permeability. Here, 
more realistic three-dimensional image of 
the core can be constructed by using (a) 
Granular scale modeling, (b) 3D 
geostatistical reconstruction of 2D thin-
section or SEM images, and (c) CT-scan 
of a small rock fragment (Richa 2010). 
The first method simulates grains in the 
reservoirs at deposition and then 
mathematically applies different 
diagenetic regimes to them and 
reconstructs the final rock, although it is 
not an exact replica of the real reservoir 
rock. The second approach uses grain-
pore microgeometry from 2D thin-
sections and uses geostatistical 
simulation to build a 3D digital binary 
rock. The last method represents the pore 
microstructure more accurately, as it 
employs a CT scan of a small fragment of 
the rock to build a 3D rock image. These 
techniques are becoming more and more 
popular in the rock physics world and 
with improving computer techniques, 
their application is also increasing.  
 
2.3   Empirical and heuristic models 
Empirical equations describe 
relationships between reservoir properties 
and their elastic responses through 
laboratory experiments. They generally 
assume some functional form and then 
determine coefficients by calibrating a 
regression to the data (Avseth et al., 
2005). On the other hand, a heuristic 
model like the time average of Wyllie et 
al. (1956) defines P velocities only from 
the volume fractions of the various 
constituents and their velocities. Such a 
model emphasizes the relationship 
between various parameters in a certain 
way, through intuitive and non-rigorous 
means (Avseth et al., 2005). The time 
average model is a very simple model 

describing velocity for a mixture of solids 
and fluids as: 
  

p fl p0

11 ,V V V
                                    (8) 

 
where Vp, Vfl, Vp0 and refer to saturated 
P-wave velocity, P-wave velocity for 
fluid, P-wave velocity for matrix and 
porosity, respectively. 

The simplicity of this model makes it 
easy to understand and has some general 
applications such as quick velocity 
evaluation of a mixture of grains and 
fluids or even pore type discrimination. 
The inverse form of this model is 
sometimes used for porosity calculation 
which could inherently introduce some 
errors as it does not take into account 
many other effects on velocity such as 
pore type and clay effects. Anselmetti 
and Eberli (1999) used this equation 
(time average) in carbonates to 
discriminate between different pore 
types. They showed that the velocity 
relating to the inter-particle porosity lies 
around the time average, while the 
velocity for rocks with stiff and soft pores 
will lie above or below the time average, 
respectively. Raymer et al. (1980) 
improved the time average equation for 
consolidated rocks with low-to-medium 
porosity as below: 
 

2
p p0 fl

2 2 2
p fl fl 0 p0

V ( 1 ) V V ,     37%
,1 (1 ) ,     47%V V V

  
    

        
    (9) 

 
where fl and 0 refer to the saturated 
rock density, fluid density and matrix 
density. In general, density can be 
calculated using the average of the rock 
constituents as: 
 

0 fl(1 ) .                               (10) 
 For intermediate porosities (between 
37% and 47%) a simple interpolation 
between these two boundaries is 
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recommended. However, none of these 
equations determine the effects of clay 
minerals on velocity, and this is the main 
factor why these equations are normally 
accompanied by considerable errors 
when used for shaly sandstone. Eberhart-
Phillips (1989) used a multivariate 
analysis to investigate the combined 
influences of effective pressure, porosity, 
and clay content for calculating velocities 
in water-saturated shaly sandstones. This 
relationship is given as: 
 

e

e

p
16.7 P

e

s
16.7 P

e

V 5.77 6.94 1.73 V _ clay
0.446( P 1.0e )

,
V 3.70 4.94 1.57 V _ clay

0.361( P 1.0e )





          

      (11) 

 
where V_clay refers to the clay content 
and Pe to the effective pressure. Effective 
pressure is the difference between 
overburden pressure and pore pressure, 
and should be used in Kbar units. 
Velocities (Vp and Vs) calculated using 
this model are pressure dependent and are 
given in km/s. This model gives an 
estimate of clay effects in sandstones 
along with effective pressure changes. 
Marion (1990) and Sams and Andera 
(2001) showed that clay can locate within 
sediments as structural, laminated, 
interstitial or dispersed. This defines 
whether the clay is load bearing or not 
and based on either of these scenarios, 
shaly sand velocity may change and 
therefore, determining clay structural 
distribution is very important for accurate 
velocity modeling in shaly sediments. 
Figure 2 shows the concept of these four 
different clay types. 

Another important aspect for the 
success of any characterization project is 
the availability of both Vp and Vs at well 
locations. Most of the time either Vs data 
is not available or its quality is 
questionable. In these regard, having a 

relationship between Vp and Vs can help 
significantly for the cases where Vs data 
is missing. Castagna et al. (1985) 
presented an empirical relation named as 
the mudrock line that relates Vp to Vs 
velocities (both in Km/s) for brine-
saturated clastic silicate rocks as: 
 

p sV 1.36 1.16V .                              (12) 
 

 Figure 2 A schematic comparison between four 
different clay types that affect elastic properties 
differently (Sams and Andera, 2001).  

This equation has wide applicability, 
especially in siliclastics and even in fluid 
discrimination in sandstones, using a 
parameter named as the fluid-factor 
introduced by Smith and Gildow (1987), 
based on P- and S-wave reflectivities. It 
assumes that any deviation from the 
mudrock line can be attributed to fluid 
changes using scaled differences between 
P- and S-wave reflectivities. This 
assumption makes use of the fluid factor 
equation mainly suitable for siliciclastics, 
as in those lithologies which do not 
follow the mudrock line deviations from 
it could potentially be interpreted as fluid 
changes. Furthermore, for Vp and Vs 
relationships, Krief et al. (1990) used the 
Raymer et al. (1980) dataset to find a 
relationship between Biot’s coefficient 
and porosity, and then applied the 
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Gassmann (1951) equation to suggest a 
Vp-Vs prediction technique that very 
much resembles the critical porosity 
model (Mavko et al., 1998). This 
relationship is written as: 
 

fl fl
2 2 2 2
p p p0 p

2 2
s s0

V V V V ,V V
                          (13) 

 where Vp and Vs are the saturated P-wave 
and S-wave velocities. Indices 0 and fl 
refer to minerals and fluids.  

Greenberg and Castagna (1992) 
combined the Gassmann equation and the 
Voigt-Reuss-Hill average to calculate Vs 
from Vp in multi-mineralic, brine-
saturated rocks based on empirical, 
polynomial Vp-Vs relationships in pure 
mono-mineralic lithologies. The required 
input parameters to this model are Vp, 
lithology, saturation and porosity. 

These three equations are quite 
commonly used to predict Vs from Vp, 
and depending on the situation either of 
them can be used to estimation S-wave 
velocity for different purposes. 
 
2.4   Hybrid models 
Hybrid models consist of a combination 
of two or more rock physics models in 
order to provide a better description of 
the reservoir. These models are widely 
used in the industry and are derived by 
connecting theoretical and/or empirical 
models together. There are various 
versions of the hybrid models which are 
adopted for different fields and scenarios, 
but the most important ones that are 
common in industry are: the Xu and 
White (1995) model, the Xu and Payne 
(2009) model, stiff and soft sand models 
(some of the empirical models like Krief 
et al. (1990) model can also be 
considered as hybrid model). 

The Xu and White (1995) model 
connects three models together in order

to calculate velocities of the saturated 
rock. It uses the time average model 
(Wyllie et al., 1956) to mix minerals 
together, and then the DEM equation is 
used to introduce dry pores into the 
effective minerals. Finally, the Gassmann 
equation is applied to introduce fluid into 
the dry pores. This model assumes two 
minerals (quartz and clay) with defined 
aspect ratios (clay aspect ratio much 
lower than quartz), and is more suitable 
for sandstone reservoirs. The Xu and 
Payne (2009) model, on the other hand, is 
designed for carbonate reservoirs. This 
model follows almost the same steps as 
the Xu and White (1995) model but 
assumes that total porosity consists of 
four pore types: (1) clay-related pores, (2) 
interparticle pores, (3) microcracks, and 
(4) stiff pores. This assumption makes it 
more suitable for sediments with varying 
pore structure such as carbonates (Figure 
3). 

The stiff and soft sand models are 
more concerned with granular media 
through combination of the Hertz and 
Mindlin model (Mindlin, 1949) with the 
modified version of Hashin–Shtrikman 
(1963) boundary model. They calculate 
elastic properties at critical porosity using 
the Hertz and Mindlin model and then 
extrapolate them for lower porosities 
using either modified upper or lower 
bounds of Hashin–Shtrikman model. The 
soft sand model is defined when the 
modified lower bound of Hashin–
Shtrikman is used, and is suitable for 
uncemented sands where cements are 
deposited far away from grain contacts. 
Increasing the coordination number to 15 
in this model gives an intermediate sand 
model. The stiff sand model uses the 
modified upper bound of Hashin–
Shtrikman, and is suitable for cemented 
sands. It assumes that the initial porosity 
is reduced by deposition of cement at 
grain contacts. 
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 Figure 3. Carbonate rock physics modeling using Xu and Payne model (Xu and Payne, 2009).  
 
 

A conceptual picture of these two 
models is shown in Figure 4. The 
modified version of the Hashin–
Shtrikman (1963) boundary model 
includes the critical porosity concept in 
the Hashin–Shtrikman (1963) bounds in 
order to reduce the range between upper 
and lower boundaries.  

 Figure 4. A conceptual picture showing stiff 
(modified Hashin–Shtrikman upper bound) and 
soft (modified Hashin–Shtrikman lower bound) 
sand models (Hossain et al., 2011). 
 

3    Discussion 
Although substantial effort has been 
made to develop new models for more 
common scenarios in subsurface but 
geology still is so complex that it cannot 
be explained by such simple models. 
These models are normally aimed at 
predicting a correct trend for your 
geology, and if you intend to make a 
more detailed calculation, more data 
needs to be input into your rock physics 
model. Moreover, anisotropy, dispersion, 
attenuation and difference in 
measurement scales can influence your 
measured data, and this is a big challenge 
during rock physics modeling. These 
effects should be accounted for at 
different steps of your modeling 
procedure in order to have a better 
prediction of elastics. In this regard the 
Backus (1962) and Hudson (1980) 
models are respectively the common 
models used for upscaling and crack 
induced anisotropy modeling. Backus 
(1962) showed that at the long 
wavelength limit, a stratified medium 
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composed of isotropic layers will behave 
like a transverse isotropic (TI) medium, 
and derived the effective elastic constants 
for such a medium. Saberi (2016) used 
forward and inverse method on Backus 
models in order to model anisotropy in a 
vertical isotropic medium (VTI) using a 
conventional log suit. Hudson (1980) 
derived the effective elastic constants of a 
cracked medium by modeling an 
isotropic background superimposed with 
oriented cracks. This model is quite 
commonly used in carbonates for 
modelling fracture effects on velocities 
and also modeling azimuthal inversion 
studies for fracture characterization. 

The inputs to rock physics models are 
normally reservoir properties (e.g. 
porosity, saturation, etc.) and the elastic 
properties (e.g. bulk and shear modulus, 
P-wave velocity, etc.) are calculated 
accordingly. This approach, which is also 
referred to as rock physics forward 
modeling, is quite common for modeling 
velocities for petrophysical logs or even 
scenario modeling. The reverse procedure 
which is referred to as inverse rock 
physics modeling is becoming more 
important in the seismic reservoir 
characterization. In this approach, 
reservoir properties are determined from 
elastic properties, which are normally 
derived from seismic velocities or 
inversion methods. Using geostatistical 
techniques during rock physics modeling, 
or even interpreting rock physics results, 
will provide an estimate of error and 
uncertainty analysis. Statistical rock 
physics modeling is a very useful 
approach when you are not confident of 
the inputs into your model, or even the 
model itself. 
 
4    Conclusions Rock physics analysis and modeling have 
now become an important step in any 
reservoir characterization project. This 
means that knowledge about the rock 
properties of the reservoir is needed if we 

want to have a better understanding of 
our reservoir. This paper reviews some of 
the most important rock physics models 
and their applications on different 
lithologies. These models are currently 
the most commonly used, although there 
are many other models that may have 
better results than the ones introduced in 
this paper. This paper is just aimed at 
summarizing the most common models 
and collecting them in one place for a 
better comparison, and also to highligh 
their advantages and disadvantages. 
 
References 
Anselmetti, F. S. and Eberli, G. P., 1999, The 

velocity deviation log: A tool to predict pore 
type and permeability trends in carbonate drill 
holes from sonic and porosity or density logs: 
American Association of Petroleum 
Geologist, 83, 450–466. 

Avseth, P., Mukerji, T. and Mavko, G., 2005, 
Quantitative seismic interpretation: Applying 
Rock Physics Tool to Reduce Interpretation 
Risk (First Edition): Cambridge University 
Press, Cambridge, UK. 

Backus, G. E., 1962, Long-wave elastic 
anisotropy produced by horizontal layering: 
Journal of Geophysical Research, 67, 4427–
4440. 

Batzle, M. and Wang, Z., 1992, Seismic 
properties of pore fluids: Geophysics, 57, 
1396–1408. 

Brie, A., Pampuri, F., Marsala, A. F., and 
Meazza, O., 1995, Shear sonic interpretation 
in gas-bearing sands: SPE 30595, 701–710. 

Berryman, J. G., 1980a, Long-wavelength 
propagation in composite elastic media I. 
Spherical inclusions: Journal of Acoustic 
Society of America, 68, 1809–1819. 

Berryman, J. G., 1980b, Long-wavelength 
propagation in composite elastic media II. 
Ellipsoidal inclusions: Journal of Acoustic 
Society of America, 68, 1820–1831. 

Biot, M. A., 1956, Theory of propagation of 
elastic waves in a fluid saturated porous solid. 
I. Low frequency range and II. Higher 
frequency range: Journal of Acoustical 
Society of America, 28, 168–191. 

Brown, R. and Korringa, J., 1975, On the 
dependence of the elastic properties of a 
porous rock on the compressibility of the pore 
fluid: Geophysics, 40, 608–616. 

Castagna, J. P., Batzle, M. L. and Eastwood, R. 
L., 1985, Relationships between 



A closer look at rock physics models and their assisted interpretation in seismic exploration                         83 

compressional wave and shear wave velocities 
in clastic silicate rocks: Geophysics, 50, 571–
581. 

Ciz, R. and Shapiro, S., 2007, Generalization of 
Gassmann equations for porous media 
saturated with a solid material: Geophysics, 
72, A75–A79. 

Deng, J. X., Han, D. and Liu, J., 2006, The effects 
of geologic parameter variation on the A-B 
Cross-plot of sand reservoir: Fluid/DHI 
Annual Meeting. 

Digby, P. J., 1981, The effective elastic moduli of 
porous granular rocks: Journal of Applied 
Mechanics, 48, 803–808. 

Dræge, A., 2006, Impact of Diagenesis on 
Seismic Properties of Siliciclastic Rocks: Ph. 
D. dissertation, University of Bergen, 
Norway. 

Dvorkin, J. and Nur, A., 1993, Dynamic 
poroelasticity: a unified model with the squirt 
and the Biot mechanisms: Geophysics, 58, 
524–533. 

Dvorkin, J. and Nur, A., 1996, Elasticity of high-
porosity sandstones, Theory for two North Sea 
data sets: Geophysics, 61, 559–564. 

Eberhart-Phillips, D. M., 1989, Investigation of 
Crustal Structure and Active Tectonic 
Processes in the Coast Ranges, Central 
California: Ph. D. dissertation, Stanford 
University, USA. 

Gassmann, F., 1951, Uber die Elastizitat poroser 
Medien: Vier. der Natur. Gesellschaft Zurich, 
96, 1–23. 

Greenberg, M. L. and Castagna, J. P., 1992, 
Shear-wave velocity estimation in porous 
rocks: Theoretical formulation, preliminary 
verification and applications: Geophysical 
Prospecting, 40, 195–209. 

Gurevich, B. and Lopatnikov S. L., 1995, 
Velocity and attenuation of elastic waves in 
finely layered porous rocks: Geophysical 
Journal International, 121, 933–947. 

Hashin, Z. and Shtrikman, S., 1963, A variational 
approach to the elastic behavior of multiphase 
materials: Journal of Mechanics and Physics 
of Solids, 11, 127–140. 

Hill, R., 1952, The elastic behavior of crystalline 
aggregate: Proceeding of Physical Society, 65, 
349–354. 

Hudson, J. A., 1980, Overall properties of a 
cracked solid: Mathematical Proceedings of 
the Cambridge Philosophical Society, 88, 
371–384. 

Hossain, Z., Mukerji, T., Dvorkin, J. and 
Fabricius, I. L., 2011, Rock physics model of 
glauconitic greensand from the North Sea: 
Geophysics, 76, E199-E209.  

Jakobsen, M., Hudson, J. A., and Johansen, T. A., 
2003a, T-matrix approach to shale acoustics: 

Geophysical Journal International, 154, 533–
558. 

Jakobsen, M., Johansen, T. A., and McCann, C., 
2003b, The acoustic signature of fluid flow in 
complex porous media: Journal of Applied 
Geophysics, 54, 219–246. 

King, M. S., 2005, Rock-physics developments in 
seismic exploration: A personal 50-year 
perspective: Geophysics, 70, 3ND–8ND. 

Krief, M., Garat, J., Stellingwerff, J., and Ventre, 
J., 1990, A petrophysical interpretation using 
the velocities of P and S waves (full-
waveform sonic): Log Analyst, 31, 355–369. 

Kuster, G. T., and Toksöz, M. N., 1974, Velocity 
and attenuation of seismic waves in two phase 
media: Part I. Theoretical formulations: 
Geophysics, 39, 587–606. 

Marion, D., 1990, Acoustical, Mechanical and 
Transport Properties of Sediments and 
Granular Materials: Ph. D. dissertation, 
Stanford University. 

Mavko, G., Mukerji, T. and Dvorkin, J., 1998, 
The rock physics handbook: Cambridge 
University Press, Cambridge, UK. 

Mindlin, R. D., 1949, Compliance of elastic 
bodies in contact: Journal of Applied 
Mechanics, 16, 259–268. 

Nishizawa, O., 1982, Seismic velocity anisotropy 
in a medium containing oriented cracks 
transversely isotropic case: Journal of Physics 
of the Earth, 30, 331–347. 

Nur, A., Mavko, G., Dvorkin, J. and Gal, D., 
1995, Critical porosity: the key to relating 
physical properties to porosity in rocks: In 
Proceeding of 65th Annual International 
Meeting, Society Exploration Geophysicist, 
878. 

Pride, S. R., Berryman J. G. and Harris J. M., 
2004, Seismic attenuation due to wave-
induced flow: Journal of Geophysical 
Research, 109, B01201. 

Raymer, L. L., Hunt, E. R., and Gardner, J. S., 
1980, An improved sonic transit time-to-
porosity transform: Transcript for Society of 
Professional Well Log Analysts, 21st Annual 
Logging Symposium, Paper P. 

Reuss, A., 1929, Berechnung der Fliessgrenzen 
vonMischkristallen aufGrund der 
Plastizita¨tsbedingung fu¨r Einkristalle: Z. 
Ang. Math. Mech., 9, 49–58. 

Richa R., 2010, Preservation of Transport 
Properties Trends: Computational Rock 
Physics Approach: Ph. D. dissertation, 
Stanford University, USA. 

Saberi, M. R., 2010: An Integrated Approach for 
Seismic Characterization of Carbonates, Ph. 
D. dissertation, University of Bergen, 
Norway. 



84                                                                             Saberi                          Iranian Journal of Geophysics, 2017 

Saberi, M. R., 2016, Modeling an elastic stiffness 
tensor in a transverse isotropic subsurface 
medium: International application Patent No: 
WO 2016/083893 A1. 

Sams M. S. and Andera M. A., 2001, The effect 
of clay distribution on the elastic properties of 
sandstones: Geophysical Prospecting, 49, 
128–150. 

Sayer, C., 2013, Introduction: Rock Physics for 
Reservoir Exploration, Characterisation and 
Monitoring: Geophysical Prospecting, 61, 
251–253. 

Smith, G. C. and Gidlow, P. M., 1987, Weighted 
stacking for rock property estimation and 
detection of gas: Geophysical Prospecting, 35, 
993–1014. 

Thomas, E. C. and Stieber, S. J., 1975, The 
distribution of shale in sandstones and its 
effect upon porosity: In Transcripts of 16th 

Annual Logging Symposium of the SPWLA, 
paper T. 

Voigt, W., 1890, Bestimmung der 
Elastizita¨tskonstanten des brasilianischen 
Turmalines: Annual Review of Physical 
Chemistry, 41, 712–729. 

Walton, K., 1987, The effective elastic moduli of 
a random packing of spheres: Journal of 
Mechanics and Physics of Solids, 35, 213–
226. 

Wang, Z., 2001, Fundamentals of seismic rock 
physics: Geophysics, 66, 398–412. 

Xu, S. and White, R. E., 1995, A new velocity 
model for clay-sand mixtures: Geophysical 
Prospecting, 43, 91–118. 

Xu, S. and Payne, M. A., 2009, Modeling elastic 
properties in carbonate rocks: The Leading 
Edge, 28, 66–74. 

 


