امکان‌سنجی وارون‌سازی احتمالاتی داده‌های لرزه‌ای با هدف تخمین تخلخل برای مخزن کربناته

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 محقق، کوکولینک (زیر مجموعه دانشگاه ملی سئول)، کره جنوبی

3 دانشیار، ژئوفیزیک در دپارتمان علوم زمین دانشگاه آرهوس، آرهوس، دانمارک،

4 دکترای ژئوفیزیک مخازن، شرکت Aker BP ASA نروژ

5 استادیار، انستیتو مهندسی نفت دانشگاه تهران، تهران، ایران

چکیده

هدف از این مطالعه، وارون­سازی مستقیم داده­های لرزه‌ای به تخلخل و توصیف کمّی عدم قطعیت مربوط به آن در یکی از مخازن کربناته جنوب غربی ایران است. روش­های وارون احتمالاتی قادرند با ترکیب توابع توزیع احتمال پارامترهای مدل و تابع توزیع درست­نمایی که متأثر از مدل نوفه است، پارامترهای مدل را به‌صورت تابع توزیع احتمال پسین ارائه کنند. این تابع با اطلاعات اولیه درباره مدل همخوانی دارد و همچنین به داده­های لرزه‌ای مقید است. در این مطالعه، از یکی از روش­های نمونه­گیر مبتنی بر زنجیره­های مارکو مونت‌کارلو استفاده شده است که می­تواند با نمونه­گیری از تابع توزیع احتمال پسین، رخدادهایی از مدل مطلوب تولید کند. برخلاف روش­های وارون قطعی که تنها یک جواب از مدل ارائه می­دهند، رخدادهای تولید­شده از تابع توزیع پسین در روش­های وارون احتمالاتی، امکان تحلیل آماری و توصیف عدم قطعیت مربوط به مدل را فراهم می‌کنند. نتایج اجرای روش پیشنهادی برای داده­های مصنوعی نشان داد برآورد واریانس نوفه، تأثیر مهمی بر نتایج وارون­سازی همچون میزان عدم قطعیت رخدادهای مدل دارد. در حالتی که نوفه مفروض در وارون­سازی، برابر، بیشتر و کمتر از نوفه داده­ها باشد، به‌ترتیب 8%، 3% و 31% از تخلخل واقعی در محل چاه، خارج از بازه 95 درصد احتمال رخدادهای تخلخل قرار می­گیرد؛ بنابراین فروتخمین بودن نوفه در روش­های وارون احتمالاتی، خطای زیادی را در رخدادهای مدل وارد می­کند. با استفاده از مدل فیزیک سنگی کالیبره­شده، الگوریتم برای ردلرزه­های مجاور چهار چاه اجرا و رخدادهایی از تخلخل و عدم قطعیت مربوط به آنها ارائه شد. ضریب همبستگی بین تخلخل واقعی در محل چاه­ها و میانگین رخدادهای تخلخل برابر با 79%، 63%، 51% و 67% برآورد شد که نشان­دهنده عملکرد خوب الگوریتم در تخمین تخلخل و عدم قطعیت مربوط به آن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility study of probabilistic seismic inversion to porosity for a carbonate reservoir

نویسندگان [English]

  • Akbar Heidari 1
  • Navid Amini 2
  • Thomas Mejer Hansen 3
  • Hamed Amini 4
  • Mohammad Emami Niri 5
1 Ph.D Student, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Researcher, CoCoLink (Subsidiary of Seoul National University), South Korea
3 Associate professor, Department of Geoscience, University of Aarhus, Aarhus, Denmark
4 PhD of reservoir geophysics, Senior Reservoir Geophysicist at Aker BP ASA, Reservoir Excellence Team
5 Assistant professor, Petroleum Engineering, college of Petroleum Engineering, University of Tehran, Tehran, Iran
چکیده [English]

The goal of this study is to invert the seismic data directly to porosity as well as to quantify the associated uncertainty in one of the carbonate reservoirs located in southwestern Iran. Probabilistic inverse methods are able to present the model parameters as a posterior probability distribution function by combining the probability density function of the model prior information and the likelihood model. The likelihood density function is defined based on the noise model. The answer to the probabilistic inverse problem is a posterior distribution function that is not only consistent with the prior model but also is constrained to the seismic data. In this study, one of the sampling methods based on Markov chain Monte Carlo is used, which is able to generate realizations of the desired model parameter by sampling from the posterior distribution function. Unlike deterministic inverse methods, which provide only one answer for the model parameters, in probabilistic inverse methods the realizations generated from the posterior distribution function allow statistical analysis and model uncertainty quantification. The results of the implementation of the proposed method on synthetic seismic data showed that the estimation of noise variance has a significant effect on the results of probabilistic inversion and the uncertainty of the model realizations. The underestimation of the noise variance leads to fitting the noise on the data and subsequently generates artifacts on the output realizations. The overestimation of the noise variance provides smooth realizations with higher uncertainty. In the latter case, the reference porosity model is in the 95% confidence interval in contrast to the former case. Therefore, care should be taken in estimating the noise variance in probabilistic inverse methods. Considering a calibrated rock physics model for the carbonate reservoir under study, which is the main core in a direct inversion approach, the proposed algorithm was applied to the seismic traces adjacent to the four well logs. The uncertainty of the porosity was quantified in each well location. The correlation coefficient of the mean of the porosity realizations and the true porosity in four well locations were approximated about 79%, 63%, 51% and 67%. The consistency of the results obtained from the inversion with the observed porosity at the well locations indicates the good performance of the algorithm in estimating the porosity and its associated uncertainty. Due to the ability of the probabilistic inverse methods in a direct inverse of seismic data to the petrophysical properties, and their applicability in being performed in a parallel structure in processing clusters, these algorithms can be used in reservoir characterization of 2D and 3D data.

کلیدواژه‌ها [English]

  • Bayesian inversion
  • porosity
  • Carbonate Reservoirs
  • Uncertainty
Aleardi, M., 2018, Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta: Journal of Applied Geophysics, 148, 272-286.
Aleardi, M., Ciabarri, F., and Gukov, T., 2018, A two-step inversion approach for seismic-reservoir characterization and a comparison with a single-loop Markov-chain Monte Carlo algorithm: Geophysics, 83(3), R227-R244.
Aleardi, M., and Mazzotti, A., 2017, 1D elastic full-waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm-Gibbs sampler approach: Geophysical Prospecting, 65(1), 64-85.
Aleardi, M., and Salusti, A., 2020, Markov chain Monte Carlo algorithms for target-oriented and interval-oriented amplitude versus angle inversions with non-parametric priors and non-linear forward modellings: Geophysical Prospecting, 68(3), 735-760.
Aleardi, M., and Tognarelli, A., 2016, The limits of narrow and wide-angle AVA inversions for high Vp/Vs ratios: An application to elastic seabed characterization: Journal of Applied Geophysics, 131, 54-68.
Amini, H., 2018, Calibration of minerals and dry rock elastic moduli in sand-
 
     shale mixtures, in 80th EAGE Conference and Exhibition 2018, 2018(1), 1-5.
Aster, R. C., Borchers, B., and Thurber, C. H., 2018, Parameter Estimation and Inverse Problems: Elsevier.
Bosch, M., 2004, The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction: Geophysics, 69(5), 1272-1282.

Bosch, M. T., Mukerji, E. F., and Gonzalez, E., 2010, Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review: Geophysics, 75(5), 165–176.

Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68(1), 185-198.

de Figueiredo, L. P., Grana, D., Roisenberg, M., and Rodrigues, B. B., 2019, Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion: Geophysics, 84(5), M1-M13.

Doyen, P., 2007, Seismic Reservoir Characterization: EAGE.

Feng, R., Hansen, T. M., Grana, D., and Balling, N., 2020, An unsupervised deep-learning method for porosity estimation based on poststack seismic data: Geophysics, 85(6), 1ND-Z30.

Gómez-Hernández, J. J., and Journel, A. G., 1993, Joint sequential simulation of multi-Gaussian fields, in Geostatistics Troia: Springer, Dordrecht, 92, 85-94.
Grana, D., 2018, Joint facies and reservoir properties inversion: Geophysics, 83(3), M15-M24.
Grana, D., 2020, Bayesian petroelastic inversion with multiple prior models: Geophysics, 85(5), 1-67.
Grana, D., Azevedo, L., and Liu, M., 2020, A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data: Geophysics, 85(4), WA41-WA52.
Grana, D., and Della Rossa, E., 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion: Geophysics, 75(3), O21-O37.
Gunning, J., and Glinsky, M. E., 2007, Detection of reservoir quality using Bayesian seismic inversion: Geophysics, 72(3), R37-R49.
Gunning, J., and Sams, M., 2018, Joint facies and rock properties Bayesian amplitude versus offset inversion using Markov random fields: Geophysical Prospecting, 66(5), 904-919.
Hansen, T. M., Cordua, K. S., Zunino, A., and Mosegaard, K., 2016, Probabilistic integration of geo-information, in Integrated imaging of the earth: theory and applications: Wiley, 93-116.
Hastings, W., 1970, Monte Carlo sampling methods using Markov chains and their applications: Biometrika 57(1), 97.
Heidari, A., Amini, N., Amini, H., Emami N. M., Zunino, A., and Hansen, T. M., 2020, Calibration of two rock-frame models using deterministic and probabilistic approaches: Application to a carbonate reservoir in south-west Iran: Journal of petroleum geoscience and engineering, 192.
Le Ravalec, M., Noetinger, B., Hu, L.Y., 2000, The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations: Mathematical Geology, 32(6), 701–723.
Madsen, R. B., Zunino, A., and Hansen, T. M., 2017, On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes: SEG Annual Meeting Proceedings, 601-605.
Metropolis, N., Rosenbluth, M., Rosenbluth, A., Teller, A., and Teller, E., 1953, Equation of state calculations by fast computing machines: Journal of Chemical Physics, 21, 1087–1092.
Mosegaard, K., 2006, Monte Carlo analysis of inverse problems: PhD thesis, University of Copenhagen, ISBN 87-991228-0-4.
Mosegaard, K., and Tarantola, A., 1995, Monte Carlo sampling of solutions to inverse problems: Journal of Geophysical Research, 100, 12431–12447.
Mosegaard, K., and Tarantola, A., 2002, Probabilistic approach to inverse problems, in Lee, W., Kanamori, H., Jennings, P., and Kisslinger, C. (Eds.): International Handbook of Earthquake and Engineering Seismology, 81A, 237–265 (Chapter 16).
Sajeva, A., Aleardi, M., Stucchi, E., Bienati, N., and Mazzotti, A., 2016, Estimation of acoustic macro models using a genetic full-waveform inversion: Applications to the Marmousi model: Geophysics, 81(4), R173-R184.
Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble: Geophysical Journal International, 138(3), 727-746.
Sambridge, M., and Mosegaard, K., 2002, Monte Carlo methods in geophysical inverse problems: Reviews of Geophysics, 40(3).

Satter, A., and Iqbal, G. M., 2016, The Fundamentals, Simulation and Management of Conventional and Unconventional Recoveries: Elsevier.

Sen, M. K., and Stoffa, P. L., 1996, Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion: Geophysical Prospecting, 44(2), 313-350.
Skopintseva, L., Aizenberg, A., Ayzenberg, M., Landrø, M., and Nefedkina, T., 2012, The effect of interface curvatureon AVO inversion of near-critical and postcritical PP-reflections: Geophysics, 77(5), N1-N16.
Soares, A., 2001, Direct sequential simulation and cosimulation: Mathematical Geology, 33(8), 911-926.
Tarantola, A., and Valette, B., 1982, Inverse problems=Quest for information: Journal of Geophysics, 50(3), 159–170.
Tarantola A. 2005. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.
Ulvmoen, M., and Omre, H., 2010, Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1-Methodology: Geophysics, 75(2), R21-R35.
Xu, S., and Payne, M., 2009, Modeling elastic properties in carbonate rocks: Lead. Edge, 28(1), 66-74.