شبیه‌سازی عددی تغییرات فصلی پلانکتون‌ها و مواد مغذی در شمال دریای عمان با استفاده از مدل جفت‌شدهROMS-NPZD

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری فیزیک دریا، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم وتحقیقات، تهران، ایران

2 استاد گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 استادیار گروه فیزیک دریا، دانشکده منابع طبیعی و محیط زیست،دانشگاه آزاد اسلامی، واحد علوم وتحقیقات، تهران، ایران

4 استاد موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در این تحقیق با استفاده از مدل سه­بعدی ROMS، تغییرات فصلی پلانکتون­ها در شمال دریای عمان بررسی شده است. مدل با استفاده از شرایط اولیه از داده­های WOA5 با تفکیک­پذیری افقی 25/0 درجه و گام زمانی 300 ثانیه به مدت یک سال انتخاب شده است. داده­های مختصاتی با درون‌یابی در راستای قائم دما و شوری، روی تراز سیگما (سی لایه) محاسبه شد. در این بررسی به علت سازگاری بیشتر زیرمدل NPZD نسبت به سایر زیرمدل­‌ها، مدل ROMS با مدل NPZD جفت شده است. نتایج شبیه­سازی نشان داد: (الف) تغییر دما از عوامل اصلی در فراوانی میزان فیتوپلانکتون­ها و زئوپلانکتون­ها است؛ (ب) پیچک­های ساعتگرد و پادساعتگرد که بیانگر به ترتیب پدیده فرو و فراچاهی در دریای عمان و تنگه هرمز هستند، باعث انتقال کلروفیل از مناطق جنوبی به شمالی می‌شوند؛ (ج) مقدار کلروفیل در طول زمستان در مقایسه با تابستان بیشتر است که علت این مسئله می­تواند تغییرات ترموکلاین فصلی باشد. علی‌رغم در دسترس بودن مواد مغذی، لایه ترموکلاین مانع شکوفایی می­شود؛ (د) بررسی تغییرات فیتوپلانکتون­ها در یک دوره یک ساله، بیشترین مقدار آنها را اواخر اسفند و اوایل بهار نشان می­دهد. فروردین ماه به علت افزایش جمعیت فیتوپلانکتون­ها، اوج شکوفایی زئوپلانکتون­ها است. همچنین تمرکز پلانکتون­ها بیشتر به مواد مغذی وابسته است، به‌طوری­که در دسترس بودن مواد مغذی اغلب عاملی کلیدی در رشد و سوخت‌وساز آنها است؛ (ه) مقدار کلروفیل در زمستان همبستگی مثبت (965/0=r) با دمای سطح آب نشان می­دهد، درحالی‌که در تابستان، همبستگی منفی است (549/0- =r) و غلظت کلروفیل در زمستان و تابستان اختلاف معنی­داری نشان می­دهد (05/0>p برای). در زمستان و تابستان، مقدار کلروفیل با نیترات همبستگی مثبت نشان می­دهد که به‌ترتیب مقدار آن 268/0=r و 794/0=r است و اختلاف معنی‌­داری را نشان می­دهد (05/0>p)؛ (و) در بیشتر موارد، نتایج ماهواره‌ای دما و کلروفیل با مقادیر ‌اندازه­گیری­شده در مدل‌سازی عددی سازگاری مناسبی داشته است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Numerical simulations of seasonal changes of plankton and minerals in the north of Oman Sea using the ROMS-NPZD paired model

نویسندگان [English]

  • Haleh Samini 1
  • Abbas_Ali Aliakbari Bidokhti 2
  • Mojtaba Ezam 3
  • tooraj valinassab 4
1 Ph.D Student, Department of Natural Resources and Enviroment Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Assistant Professor, Department of Natural Resources and Enviroment Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Professor, Academic Relations and International Affairs Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

In this study, the seasonal changes of plankton in the north of Oman Sea have been investigated using the three-dimensional Regional Ocean Modeling System (ROMS) model. The initial conditions of the model follow the preliminary conditions as in WOA5 data with a horizontal resolution of 0.25 degrees and a time step of 300 seconds for one year. Vertical coordinate data were for 30 layers sigma levels by interpolations in the vertical direction of temperature and salinity. Due to the greater sub-model compatibility, ROMS model is coupled with Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The simulation results showed that: (1) Temperature change is one of the main factors in the frequency of phytoplankton and zooplankton blooms; (2) Clock and counterclockwise Eddies, which represent the phenomenon of extra down or upwells in the Sea of Oman and the Strait of Hormuz, causes the transfer of chlorophyll from the south to the north; (3) The amount of chlorophyll is higher during winter compared to summer. It can be due to the presence of seasonal thermocline layer which prevents blooming despite the availability of nutrients; (4) The phytoplankton cncenteration changes in a period of one year shows that their maximum value is in late March and early spring, and April is the peak of zooplankton due to the increase in phytoplankton population. Moreover, the density of plankton depends mainly on mineral nutrients, therefore, the availability of minerals is often considered as a key factor in their growth and metabolism; (5) Chlorophyll content shows a positive correlation with water surface temperature in winter (r = 0.965), while a negative one in summer (r = -0.549). There is a significant difference between chlorophyll density in winter and summer (p <0.05). There was a positive correlation between amount of chlorophyll and nitrate in winter (r = 0.268) and summer (r = 0.794), which suggests a significant difference between winter and summer (for p <0.05); (6) There were good agreements between satellite observations of temperature and chlorophyll and the values measured in numerical modeling in majority of the cases.

کلیدواژه‌ها [English]

  • Oman Sea
  • numerical simulation
  • ROMS-NPZD
  • Plankton
  • Minerals
  1. خاتمی، ش.، ولی‌نسب، ت.، سراجی، ف.، 1391، بررسی نوسانات فصلی فیتوپلانکتون­ها در آب­های ساحلی جزیره لارک در خلیج فارس: مجله زیست­شناسی ایران، 25(1)، 1-6.

    روحانی قادیکلایی، ک.، عبدالعلیان، ع.، فروغی فرد، ح.، معزی، م.، زاهدی، م.، مرتضوی، م.، 1396، آلودگی ناشی از شکوفایی­های مضر جلبکی و اثرات آن بر اکوسیستم­های دریایی: نوزدهمین همایش ملی صنایع دریایی.

    قاضی، ا.، علی‌اکبری بیدختی، ع.، عظام، م.، 1394، بررسی ویژگی­های فیزیکی ساختار لایه‌ای در دریای عمان: سومین کنفرانس بین‌المللی اقیانوس­شناسی خلیج فارس.

    دریانبرد، غ.، حسینی، ع. .، ولی نسب، ت.، 1383 ،تعیین میزان توده زنده کف زیان به روش مساحت جاروب شده در دریای عمان (آبهای استان سیستان و بلوچستان): موسسه تحقیقات شیلات ایران، 818.

    Abbaspour, M., and Zohdi, E., 2018, Red tide development modeling in Persian Gulf and study nutrients effects on algal bloom: Research in Marine Sciences, 3, 289-302.

    Al-Jufaili, S., Al-Jabri, M.,  Al-Baluchi, A.,  Baldwin, R.M., Wilson, S.A.,  West, F., Matthews, A.D., 1993, Human impacts on coral reefs in the Sultanate of Oman: Estuar. Coast. Shelf Sci, 49 , pp. 65-74

    Al-Hashmi, K. A., Claereboudt, M. R., Al-Azri, A. R., and Piontovski, S. A., 2010, Seasonal changes of chlorophyll and environmental characteristics in the Sea of Oman: The Open Oceanography Journal, 4, 107-114.

    Anderson, M., 1994, Red Tides: Scientific American Journal, 271, 52-58.

    Banse, K., Naqvi, S. W. A., Narvekar, P. V., Potal, J. R., and Jayakumar, D. A., 2014, Oxygen minimum zone of the open Arabian Sea: Variability of oxygen and nitrite from daily to decadal timescales: Biogeosciences, 11, 2237-2261.

    Batchelder, H. P., Edwards, C. A., and Powell, T. M., 2002, Individual-based models of copepod populations in coastal upwelling regions: implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention: Progress in Oceanography, 53(2-4), 307-333.

    Dorgham, M. M., and Moftah, A., 1989, Environmental conditions and phytoplankton

     

    distribution in the Persian Gulf and Gulf of Oman, September 1986: Journal of the Marine Biological Association of India, 31(1), 36-53.

    Edwards, C. A., Batchelder, H. P., and Powell, T. M., 2000, Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system: Journal of Plankton Research, 22(9), 1619-1648.

    Fennel, K., Losch, M., Schröter, J., and Wenzel, M., 2001, Testing a marine ecosystem model: sensitivity analysis and parameter optimization: Journal of Marine Systems, 28(1-2), 45-63.

    Gilbert, P. A., 2007, Eutrophication and harmful algal blooms. A complex global issue, examples from the Arabian seas including Kuwait bay and an introduction to the global ecology and oceanography of harmful algal blooms (GEOHAB) program: International Journal of Oceans and Oceanography, 2(1), 157-169.

    Haidvogel, D. B., and Beckmann, A., 1999, Numerical Ocean Circulation Modeling: Imperial College Press, London, UK, p. 330.

    Hamzehei, S., Bidokhti, A., Mortazavi, M., and Gheiby, A., 2013, Red tide monitoring in the Persian Gulf and Gulf of Oman using MODIS sensor data: Technical Journal of Engineering and Applied Sciences, 12, 1100-1107.

    Hamzehei, S., Bidokhti, A. A., Mortazavi, M. S., and Gheibi, A., 2012, Utilization of satellite imageries for monitoring harmful algal blooms at the Persian Gulf and Gulf of Oman: 2012 International Conference on Environmental, Biomedical and Biotechnology IPCBEE, Singapore, 41, 71-174.

    Kimberly, H. H., and Bethan, M. J., 2015, Phytoplankton strategies for photosynthetic energy allocation: Annual Review of Marine Science, 7, 265-297.

    Lee, J., Kim, T., and Moon, J., 2016, Application of ROMS-NPZD coupled model for seasonal variability of nutrient and chlorophyll at surface layer in the Northwestern Pacific: Ocean and Polar Research, 38(1), 1-19.

    Marchesiello, P., McWilliams, J. C., and Shchepetkin, A., 2003, Equilibrium structure and dynamics of the California Current System: Journal of Physical Oceanography, 33(4), 753-783.

    Naqvi, S. W. A., 1994, Denitrification processes in the Arabian Sea: Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 103(2), 279-300.

    Naqvi , S. W. A., Moffett, J. W., Gauns, M. U., Narvekar, P. V., Pratihary, A. K., ... , and Ahmed, S. I., 2010, The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon: Biogeosciences, 7, 2091–2100.

    Peña, M. A., 2009, Modeling of biogeochemical cycles and climate change on the continental shelf: An example from the Pacific coast of Canada: Proceeding of the Fourth Workshop on the Okhotsk Sea and Adjacent Areas, 49-54.

    Piontkovski, S. A., Al-Maawali, A., Al-Manthri, W. A. M., Al-Hashmi, K., and Popova, E. A., 2014, Zooplankton of Oman coastal waters: Journal of Agricultural and Marine Sciences, 19, 37-50.

    Piontkovski, S. A., Nezlin, N. P., Al-Azri, A., and Al-Hashmi, K., 2012, Mesoscale eddies and variability of chlorophyll-a in the Sea of Oman: International Journal of Remote Sensing, 33(17), 5341-5346.

    Powell, T. M., Lewis, C. V., Curchitser, E. N., Haidvogel, D. B., Hermann, A. J., and Dobbins, E. L., 2006, Results from a three dimensional, nested biological physical model of the California Current System and comparisons with statistics from satellite imagery: Journal of Geophysical Research: Oceans, 111(C7).

    Reboreda, R., Nolasco, R., Castro, C. G., Álvarez-Salgado, X. A., Cordeiro, N. G., Queiroga, H., and Dubert, J., 2014, Seasonal cycle of plankton production in the Iberian margin based on a high resolution ocean model: Journal of Marine Systems, 139, 396-408, Doi:10.1016/j.jmarsys.2014.08.004.

    Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963, The influence of organism on the composition of sea water: The Sea, 2, 26-77.

    Reynolds, R. M., 1993, Physical oceanography of the Gulf, Strait of Hormuz and the Gulf of Oman - Results from the Mt Mitchell expedition: Marine Pollution Bulletin, 27, 35-39.

    Ryan, J. P., Chszez, F. P., and Bellingham, J. G.,

    1. Physical-biological coupling in Monterey Bay, California:topographic influences on phytoplankton ecology.Marine Ecology progress series, 287, 23-32.

    Sedigh Marvasti, S., Gnanadesikan, A., Bidokhti, A. A., Dunne, J. P., and Ghader, S., 2016, Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman: Biogeosciences, 13(4), 1049-1069.

    Selvin Pitchaikani, J., and Lipton, A. P., 2016, Nutrients and phytoplankton dynamics in the fishing grounds off Tiruchendur coastal waters, Gulf of Mannar, India: Springer Plus, 5, 1405.

    Sen Gupta, R., Moraes, C., George, M. D., Kureishy, T. W., Noronha, R. J., and Fondekar, S. P., 1980, Chemistry and hydrography of the Andaman Sea. Indian: Journal of Marine Sciences, 10, 228-233.

    Sharifinia, M., Penchah, M. M., Mahmoudifard, A., Gheibi, A., and Zare, R., 2015, Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques: Sains Malaysiana, 44(3), 387-397.

    Shchepetkin, A. F., and McWilliams, J. C., 2003, A method for computing horizontal pressure‐gradient force in an oceanic model with a nonaligned vertical coordinate: Journal of Geophysical Research: Oceans, 108(C3).

    Smith, S., Roman, M., Prusova, I., Wishner, K., Gowing, M., Codispoti, L. A., Barber, R., Marra, J., and Flagg, C., 1998, Seasonal response of zooplankton to monsoonal reversals in the Arabian Sea: Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2369-2403.

    Spitz, Y. H., Newberger, P. A., and Allen, J. S.,

    1. Ecosystem response to upwelling off the Oregon coast: Behavior of three nitrogen-based models. Journal of Geophysical Research: Oceans, 108(C3).

    Yan, T., and Zhou, M. J., 2004, Environmental and health effects associated with Harmful Algal Bloom and marine algal toxins in China: Biomedical and Environmental Sciences: BES, 17(2), 165-176.