تغییرشکل‌های معاصر پوسته‌ای در منطقه البرز بر اساس میدان سرعت GPS و توابع اسپلاین

نوع مقاله : مقاله پژوهشی‌

نویسنده

استادیار، دانشکده عمران، دانشگاه تبریز، تبریز، ایران

چکیده

اندازه­گیری­های جابجایی سطحی پوسته زمین با استفاده از مشاهدات GPS به شکل گسسته در محل ایستگاه­ها انجام می­شود؛ بنابراین، نمی­توان تغییرشکل پوسته را به­صورت یک میدان پیوسته بررسی کرد. برای حل این مسئله می­توان از درون‌یابی با توابع اسپلاین استفاده نمود. در این روش مختصات جغرافیایی و بردار مؤلفه­های سرعت ایستگاه­ها ورودی بوده و مؤلفه­های میدان سرعت دو بعدی(Ve, Vn)  روی شبکه منظم با فواصل 30 دقیقه خروجی هستند. برای انجام آنالیز داده‌های برداری پراکنده جابجایی مسطحاتی 86 ایستگاه GPS با توزیع غیریکنواخت در منطقه البرز واقع در شمال ایران مورد آنالیز قرار گرفته است. دلیل انتخاب این منطقه وجود ایستگاه­های GPS  متعدد و زمین­ساخت فعال آن است. درون‌یابی برای مؤلفه­های بردارهای سرعت به­طور جداگانه و هم‌زمان با درنظرگرفتن ارتباط کشسانی با نسبت پواسون انجام می­شود. برای اعتبارسنجی مدل ده­درصد داده­ها برای آزمون و بقیه برای آموزش انتخاب می­شوند. ضریب تعیین برای مؤلفه­های شرقی و شمالی به­ترتیب برابر 25/0 و 88/0 به‌دست آمد. برای کاهش اثر همبستگی داده­های با فواصل نزدیک در نتایج اعتبارسنجی، کاهش داده با بلوک­های 50 کیلومتری انجام شد. در این حالت ضریب تعیین برای مؤلفه­های شرقی و شمالی به­ترتیب برابر 18/0- و 47/0 تعیین شد. برای درون‌یابی هم‌زمان دو مؤلفه ضریب تعیین برابر 88/0 و با کاهش داده با بلوک­های 50 کیلومتری برابر 84/0 به‌دست آمد. اعتبارسنجی­ها نشان می­دهد که درون‌یابی هم‌زمان مؤلفه­ها با استفاده از ارتباط کشسانی آن‌ها منجر به بهبود نتایج برای داده­های برداری پراکنده نسبت به درون‌یابی جداگانه مؤلفه­ها می­شود. نتایج درون‌یابی میدان سرعت نشان می‌دهد که توزیع مکانی تغییرشکل پوسته در ناحیه البرز نامنظم بوده و دارای ویژگی افراز است. نرخ کرنش برآوردی از میدان سرعت درون‌یابی شده، تغییرشکل از نوع همگرایی در منطقه مورد مطالعه را نشان می‌دهد و وقوع فشارش در منطقه مرتفع البرز را تأیید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Present-day crustal deformation in Alborz region based on GPS velocity field and spline functions

نویسنده [English]

  • Asghar Rastbood
Assistant Professor, Civil Engineering Faculty, University of Tabriz, Tabriz, Iran
چکیده [English]

GPS observations over the Earth surface occur at the location of stations. So, they have a discrete form and are often sparse and irregularly distributed. Most of the data processing approaches require the data over a regular grid. As such, the interpolation of sparse observations onto a regular grid, known as gridding, is a challenging step in geosciences. To overcome this problem, interpolation with spline functions can be used.
In this method, the geographic coordinates and velocity components of GPS stations are inputs, and the two-dimensional velocity field components on a regular grid are outputs. The sparse vector data of horizontal displacements of 86 GPS stations with non-uniform distribution in the Alborz region located in the north of Iran has been analyzed. Due to ample GPS stations and a tectonically active area, this region has been selected for study.
Interpolation is done for each component separately and in coupled form. Both cases are based on the Green functions of an elastic body subjected to in-plane forces. The second approach ensures elastic coupling between the two components. Coupling could be adjusted by varying Poisson’s ratio. Vector gridding is done using the Poisson's ratio 0.5 to couple the two horizontal components.
Since the used Green functions developed for the half-space, an arbitrary map projection e.g., Mercator used to create it. Trend analysis was done on the input data first. Then residuals were calculated by subtracting predicted trend from the input data. The output is passed onto block reduction to generate reduced data. Then, the spline is fitted to the residuals of trend analysis and block reduction.
To validate the model, ten percent of the data are selected for testing and the rest for training. The coefficient of determination for eastern and northern components are as 0.25 and 0.88, respectively. To reduce the correlation effect of data with close distances in the validation results, data reduction is done with 50 km blocks. In this case, the coefficient of determination for eastern and northern components are -0.18 and 0.47. For the coupled interpolation of two components, the coefficient of determination is 0.88 and by reducing the data with 50 km blocks, it is 0.84. Validations show that the coupled interpolation of velocity components using elasticity constraint leads to improved interpolation of sparse vector data.
The results of velocity field interpolation show that the spatial distribution of the crustal deformation in the Alborz region is irregular and has partitioning characteristics. The range of the northern components is larger than the eastern components. The direction of the northern components is always towards Eurasia, but the direction of the eastern components changes in the region in such a way that the amplitude of the eastern component in the inner region is around zero. The amplitude of the northern components is decreasing from south to north and from west to east. Estimated strain rate from interpolated velocity field shows the convergence deformation in the study area and confirms the compressing of
high-elevation region of Alborz.

کلیدواژه‌ها [English]

  • Biharmonic spline
  • interpolation
  • Green’s Functions
  • horizontal GPS velocity field
  • Alborz
Arnoso, J., and Riccardi, U., 2020, Strain Pattern and Kinematics of the Canary Islands from GNSS Time Series Analysis, Remote Sensing, 12(20), 10.3390/rs12203297.
Bogusz, J., Klos, A., Grzempowski, P., and Kontny, B., 2014, Modelling the velocity field in a regular grid in the area of poland on the basis of the velocities of European permanent stations, Pure and Applied Geophysics, 171, 809-833.
Cai, J., and Grafarend, E. W., 2007, Statistical analysis of geodetic deformation (strain rate) derived from the space geodetic measurements of BIFROST Project in Fennoscandia, Journal of Geodynamics, 43(2), 214–238.
Cardozo, N., Allmendinger, R. W., 2009, SSPX: A program to compute strain from displacement/velocity data, Computers & Geosciences, 35(6), 1343–1357.
Djamour, Y., Vernant, P., Bayer, R., Hamid Reza Nankali, H., Ritz, J.-F., Hinderer, J., Hatam, Y., Luck, B., Moigne, N.,  Sedighi, M., and Khorrami, F., 2010, GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran, Geophys. J. Int. 183(3), 1287–1301.
Feliciano-Cruz, L. I., Ortiz-Rivera, E. I., 2012, Biharmonic spline interpolation for solar radiation mapping using Puerto Rico as a case of study, 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, pp. 002913-002915, doi: 10.1109/PVSC.2012.6318196.
Frohling, E., and Szeliga, W., 2016, GPS constraints on interpolate locking within Makran subduction zone, Geophys. J. Int., 205(1), 67–76.
Ghods A., Shabanian E., Bergman E., Faridi M., Donner S., Mortezanejad G. and Aziz-Zanjani A., 2015, The Varzaghan–Ahar, Iran, Earthquake Doublet (Mw 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophys. J. Int., 203(1), 522–540.
Hackl, M., and Malservisi, R., 2009, Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci., 9(4), 1177–1187.
Handwerger, A. L., Huang, M. H., Fielding, E. J., Booth, A. M., and Bürgmann, R., 2019, A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Scientific reports, 9(1), 1-12.
Hessami, K., Jamali, F. and Tabassi, H., 2003, Major Active Faults of Iran (map), Ministry of Science, Research and Technology, International Institute of Earthquake Engineering and Seismology.
Khorrami F., Vernant P., Masson F., Nilfouroushan F., Mousavi Z., Nankali H., Saadat S. A., Walpersdorf A., Hosseini S., Tavakoli P., Aghamohammadi A., and Alijanzade M., 2019, An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophys. J. Int., 217(2), 832–843.
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli. F., Daignières, M., Nankali, H., and Van-Gorp, S., 2007, Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int., 170(1), 436–440.
Masson, F., Lehujeur, M., Ziegler Y., and Doubre, C., 2014, Strain rate tensor in Iran from a new GPS velocity field, Geophys. J. Int., 197(1), 10-21, 10.1093/gji/ggt509.
Raeesi, M., Zarifi, Z., Nilfouroushan, F., Boroujeni S., and Tiampo, K., 2017, Quantitative Analysis of Seismicity in Iran, Pure Appl. Geophys., 174, 793-833.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam, G., 2006, GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions, J. geophys. Res., 111, 10.1029/2005JB004051.
Ritz, J.-F., Nazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S., and Vernant, P., 2006, Active transtension inside central Alborz: A new insight into northern Iran–southern Caspian geodynamics, Geology, 34(6), 477-480.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller,
 
 W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F., 2017, Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. https://doi.org/10.1111/ecog.02881.
 
Sandwell, D. T., 1987, Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data, Geophys. Res. Lett., 14, 139–142, 10.1029/GL014i002p00139.
Sandwell, D. T., and Wessel P., 2016, Interpolation of 2-D vector data using constraints from elasticity, Geophys. Res. Lett., 43, 10,703–10,709, 10.1002/2016GL070340.
Savage, J. C., Weijun Gan, W., Svarc, J. L., 2001, Strain accumulation and rotation in the Eastern California Shear Zone, Journal of Geophysical Research, 106 (B10), 21995-22007.
Shen, Z. K., M. Wang, Y. Zeng, and F. Wang, 2015, Optimal interpolation of spatially discretized geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117–2127, doi:10.1785/0120140247.
Shen, Z.K.; Lü, J.; Wang, M.; Bürgmann, R., 2005, Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth, 110, B11409, doi:10.1029/2004JB003421.
Talebian, M., Ghorashi, M., Nazari, H., 2013. Seismotectonic map of the Central Alborz, Research Institute for Earth Sciences, Geological Survey of Iran.
Tape, C., Muse, P., Simons, M., Dong, D., and Frank Webb F., 2009, Multiscale estimation of GPS velocity fields, Geophys. J. Int., 179(2), 945–971.
Uieda, L., 2018, Verde: Processing and gridding spatial data using Green’s functions. Journal of Open Source Software, 3(30), 957. https://doi.org/10.21105/joss.00957.
 
Uieda, L., Sandwell, D., and Wessel, P., 2018, Joint Interpolation of 3-component GPS Velocities Constrained by Elasticity. figshare, 10.6084/m9.figshare.6387467.
Valavi, R., Elith, J., Lahoz‐Monfort, J. J., and Guillera‐Arroita, G., 2019, blockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232.
VanGorp, S., Masson, F. and Chéry, J., 2006, The use of Kriging to interpolate GPS velocity field and its application to the Arabia-Eurasia collision zone, Geophysical Research Abstracts, 8, 1607-7962/gra/EGU06-A-02120.
Vernant, P., Nilforoushan, F., Chery J., Bayer, R., Djamour Y., Masson F., Nankali H., Ritz J.-F., Sedighi M., Tavakoli, F., 2004, Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth and Planetary Science Letters, 223(1-2), 177 – 185.  
Wdowinski, S., Smith-Konter, B., Bock, Y., Sandwell, D., 2007, Diffuse interseismic deformation across the Pacific–North America plate boundary, Geology, 35, 311–314.
Weiwei B., Jicang W., and Weiwei W., 2020, Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China, Remote Sensing, 12(22), 3753, DOI: 10.3390/rs12223753
Wu, Y., Jiang Z., Liu, X., Wei, W., Zhu, S., Zhang L., Zou Z., Xiong, X., Wang, Q. and Du J., 2016. A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields, Pure and Applied Geophysics, 174(3), 1201-1217.