مدل‌سازی دوبعدی غیرخطی داده‌های گرانی‌سنجی با استفاده از الگوریتم ژنتیک چند‌هدفه NSGA-II و روش هیبریدی NSGAII-TOPSIS

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار ، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران

چکیده

در اکتشافات نفت، تعیین بستر حوضه­های رسوبی از اهمیت بسیار زیادی برخوردار است. مطالعه هندسه سنگ بستر و تهیه تصاویر دوبعدی از آن، مستلزم استفاده از محاسبات وارون غیرخطی است. الگوریتم­های مورد استفاده شامل الگوریتم ژنتیک مرتب­سازی نامغلوب (Non-dominated Sorting Genetic Algorithm-II) و روش هیبریدی NSGAII-TOSIS است که ابزاری مفید در محاسبات برآورد عمق به‌شمار­می‌روند. الگوریتم ژنتیک مرتب­سازی نامغلوب برای حل مسائلی با توابع هدف متعدد و بیشتر متعارض کاربرد دارد. این الگوریتم توانایی زیادی در حل مسائل چندهدفه نامقید دارد. روش هیبریدی الگوریتم NSGA-II با الگوریتمTOPSIS  می­تواند جایگزینی برای روش­های بهینه­سازی در مدل‌سازی ژئوفیزیکی باشد. در این مطالعه جهت راستی­آزمایی و صحت­سنجی الگوریتم­های به‌کار­رفته، از داده­های تولید­شده با یک مدل مصنوعی فرضی و پیچیده استفاده شد. برای بررسی دقیق­تر عملکرد این الگوریتم­ها، داده­های مصنوعی فرضی در دو حالت بدون نوفه و همراه با نوفه سفید گوسی تا 10 درصد مطالعه و بررسی شدند. نتایج مدل­سازی با این الگوریتم­ها تطابقی پذیرفتنی با مدل اولیه داشت. این نتایج حاکی از پایداری مناسب الگوریتم‌ها در برابر نوفه­های سفید گوسی با دامنه­های به‌نسبت زیاد است. با بررسی داده­های واقعی مربوط به داده­های گرانی­سنجی حوضه مغان در شمال غرب ایران و صحرای آتاکاما در کشور شیلی، نتایج نشان­دهنده عملکرد مناسب هر دو الگوریتم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear two-dimensional modeling of gravimetric data using non-dominated sorting genetic algorithm (NSGA-II) and NSGAII-TOPSIS hybrid technique

نویسندگان [English]

  • Ramin Aramesh Asl 1
  • Hamid Aghajani 2
  • Mehrdad Soleimani Monfared 2
  • Mohammad Rezaie 3
1 Ph.D. student, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood , Iran
2 Associate Professor, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor , Faculty of Technical Engineering, Malayer University, Malayer, Iran
چکیده [English]

Studying the bedrock geometry in mining and oil exploration operations to obtain its 2D pattern requires nonlinear reverse computations. Local optimization methods for solving nonlinear inverse problems are based on linearizing the changes of the model similar to a primary model and finding an objective function of minimum error from the parameters of the model; however, these optimization methods are not able to select a suitable primary function that is close enough to the general optimal value. That is to say, every objective function can have several minimum and maximum solutions. The lowest minimum is called the global minimum while the rest of them are named local minima. Therefore, in local inverse methods, the goal is to find the minimum of an objective function, and also an objective function might have a few local minima with different values. In this case, it is not suitable to use gradient-based methods for exploration purposes, unless the primary model is very close to the actual answer, which is outside the control of geological structures or the geometry of the subsurface. Despite the easy execution and high convergence rate of the local methods, there is the possibility of being trapped in local minima because these methods are dependent on the primary model, and also finding more than one optimized point in 2D or 3D simulations; this is why local optimization methods are considered deterministic algorithms. Multi-objective metaheuristic optimization algorithms are capable of searching the feasible region and they also provide a solution independent of the primary model. Searching the feasible region means finding all the feasible solutions for a problem. Each point in this region is representing a solution that can be ranked based on its value. One of the important differences between local optimization and metaheuristic methods is constraining. Constraining metaheuristic global optimization methods are only used for constraining the feasible region based on previous knowledge or estimation relations, which is different from constraining local optimization that is used for stabilizing inverse simulation. The algorithm used in the present work includes non-dominated sorting genetic algorithm (NSGA-II). The NSGA-II is commonly used to solve problems with multiple, typically conflicting objective functions. This algorithm is capable of being developed and also has a high potential for solving unbounded multi-objective problems. In the present study, NSGA-II algorithm was verified and validated using the data produced by an imaginary and complex synthetic model. In the present research work, a hybrid technique of NSGA-II and TOPSIS algorithms was introduced and utilized as a viable search method for nonlinear modeling of the gravity data, and a substitute for the optimization methods. In order for a more precise examination of the performance of this algorithm, the imaginary synthetic data were used both with no noise and with up to 10% Gaussian white noise (GWN). Based on the gravimetric data of the Moghan basin and Atacama Desert, Chile, the results obtained from algorithm indicated good performance of the NSGA-II and NSGAII-TOPSIS algorithms.

کلیدواژه‌ها [English]

  • Modeling
  • NSGA-II algorithm
  • hybrid technique
  • Moghan
  • Atacama
جولایی، ا.، عرب امیری، ع.، نجاتی کلاته، ع.، فرزانه، ف.، 1399، مدل­سازی هندسه سنگ بستر با استفاده از داده­های گرانی­سنجی و الگوریتم کلونی مورچگان: مجله ژئوفیزیک ایران، 14(1)، 39-54.
نجاتی کلاته، ع.، ابراهیم‌زاده اردستانی، و.، شاهین، ا.، متولی عنبران، س. ه.، قمی، ش.، جوان، ا.، 1388، مدل‌سازی وارون دوبعدی غیرخطی داده­های گرانی‌سنجی ناحیه مغان با استفاده از روش مارکوارت- لونبرگ: مجله علوم زمین، 19(74)، 13-20.
Atashpaz-Gargari, E., and Lucas, C., 2007, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialist competition: IEEE Congress on Evolutionary Computation, 4661-4667.
Barbosa, V., Cristina, F., and Silva, J. B., 1994, Generalized compact gravity inversion: Geophysics, 59(1), 57-68.
Barbosa, V., and Silva, J. B., 2011, Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data: Geophysical Prospecting, 59(6), 1021-1034.
Bijani, R., Lelievre, P., Neto, C. F., and Farquharson, C. G., 2017, Physical-property-, lithology- and surface-geometry-based joint inversion using Pareto Multi-Objective Global Optimization: Geophysical Journal International, 209, 730–748.
Boschetti, F., Mike, D., and Ron, L., 1997, Inversion of potential field data by genetic algorithms: Geophysical Prospecting, 45)3(, 461-478.
Deb, k., 2001, Multiobjective Optimization Using Evolutionary Algorithms: Wiley.
Deb, K., Pratab, A., Agarwal, S., and Meyarivan, T., 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II: IEEE Transaction on Evolutionary Computation, 6(2).
Gallardo-Delgado, L. A., Pérez-Flores, M. A., and Gómez-Treviño, E., 2003, A versatile algorithm for joint 3D inversion of gravity and magnetic data: Geophysics, 68(3), 949-959.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning: Addison Wesley.
Hwang, C. L., and Yoon, K., 1981, Multiple Attribute Decision Making: Methods and Applications: a state-of-the-art survey, volume 186 of Lecture Notes in Economics and Mathematical Systems: Springer-Verlag, http://dx.doi.org/10.1007/978-3-642-48318-9.
Jie, X., and Tao, Z., 2015, Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data: Applied Geophysics, 12(2), 127–136.
Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., and Fudym, O., 2015, Gravity inversion and uncertainty assessment of basement relief via particle swarm optimization: Journal of Applied Geophysics, 116, 180-191.
Poormirzaee, R., 2016, S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion curves via PSO inversion algorithm: Arabian Journal of Geosciences, 9(16(
Reshadati, M., and Motevali-Anbaran, S. H., 2022, Stochastic modeling of gravity data for 2D basement reliefs without regularization coefficient: Iranian Journal of Geophysics, 15(4), 101-114.
Roy, K., Kumar, K., 2007, Potential Theory in Applied Geophysics: Springer Science & Business Media.
Schwarzbach, C., Borner, R., and Spitzer, K., 2005, Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm: Geophysical Journal International, 162, 685–695.
Sen, M. K., and Stoffa, P. L., 1995, Global Optimization Methods in Geophysical Inversion: Elsevier Science.
Shaw, R., and Srivastava, S., 2007, Particle swarm optimization: A new tool to invert geophysical data: Geophysics, 72(2), F75–F83.
Sheta, A., and Turabieh, H., 2006, A comparison between genetic algorithms and sequential quadratic programming in solving constrained optimization problems: International Journal on Artificial Intelligence and Machine
 
      Learning (AIML), 6(1), 67-74.
Snieder, R., 1998, The role of nonlinearity in inverse problems: Inverse Problems , 14, 387-404.
Srinivas, N., and Deb, K., 1995, Multiobjective function optimization using nondominated sorting genetic algorithms: Evolutionary Computation, 2(3), 221–248.
Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation: Society for Industrial and Applied Mathematics.
Tudor, B., 2013, Variational image denoising approach with diffusion porous media flow: Abstract and Applied Analysis, Hindawi, 2013, 1-8.
Yeh, J. Y., and Lin, W. S., 2007, Using simulation technique and genetic algorithm to improve the quality care of a hospital emergency department: Journal of Expert Systems with Applications, 32(4), 1073-1083.
Yuan, S., Tian, N., Chen, Y., Liu, H., and Liu, Z., 2008, Nonlinear geophysical inversion based on ACO with hybrid techniques: Natural Computation, ICNC'08, Fourth International Conference on. 4, 530-534, IEEE.
Zhdanov, M. S., 2002, Geophysical Inverse Theory and Regularization Problems: Elsevier.
Zitzler, E., Deb, K., and Thiele, L., 2000, Comparison of multiobjective evolutionary algorithms: Empirical results: Evolutionary Computation, 8(2), 173-195.