کنترل کیفی داده‌های رادار هواشناسی با استفاده از ساختار افقی و قائم برگشت‌پذیری

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

موسسه ژئوفیزیک، دانشگاه تهران

چکیده

رادارهای هواشناسی قابلیت نمونه‌برداری از جوّ با تفکیک زمانی و مکانی بالا دارند و بسته به نوار بسامد مورد استفاده، دارای کاربردهای متنوع در علوم جوّی با مقیاس‌های مکانی گوناگون هستند. شبکه رادار هواشناسی ایران در نوارهای بسامدی C و S از قابلیت تشخیص قطرات باران و تعیین میزان بارش برخوردار است. داده‌های رادار هواشناسی دارای نوفه‌های متنوعی است که استفاده مطمئن و پیوسته از آنها  مشروط به حذف این نوفه‌ها است. اصلاح داده‌های زمینه علاوه بر از بین بردن نوفه‌های مختلف، میدان‌های اندازه‌گیری‌شده را نیز به‌صورت مطلوبی تصحیح می‌کند. مورد مطالعاتی پژوهش حاضر، رادار هواشناسی تهران است که از سمت شمال‌غرب متاثر از انتشار امواج مزاحم نوار C است که پهنه بزرگی از منطقه را کاملا اشباع کرده‌اند. نتایج این پژوهش نشان‌دهنده رفع مناسب نوفه‌های ناشی از کلاترهای ثابت و انتشار ناهمگون امواج راداری و هم‌چنین نوفه‌های نقطه‌ای و محلی است. صافی به‌کار رفته، نوفه این منطقه را نیز به‌خوبی کاهش داده و در نتیجه کیفیت داده‌ها را اصلاح کرده است. میزان کارایی صافی‌ها بستگی به تنظیم آستانه حساسیت آنها دارد که بنا به کاربرد داده‌ها تنظیم‌پذیر است.

کلیدواژه‌ها


عنوان مقاله [English]

Quality control of meteorological radar data using three-dimensional reflectivity

نویسندگان [English]

  • Mahmood Safar
  • Farhang Ahmadi-Givi
  • Yahya Golestani
چکیده [English]

Meteorological radars, after decades of significant advances, have found their unsurpassed active remote sensing role in detecting hazardous weather phenomena, unraveling storms dynamic evolutionary processes, and characterizing precipitation using sophisticated, polarimetric based clutter characterization methods (Melnikov et al., 2003; Bringi et al., 1991; Zmic, 2005 and 2007). Advances, particularly with regard to digital processing and algorithm sophistication have made it possible to infer secondary products such as precipitation liquid water content, rainfall rate, and many other products. Weather radars carry certain ambiguities that are inherent nature of any remote sensing instruments. The ambiguities may arise from electronics stability issues, antenna accuracy, radio electromagnetic interference (RFI) from the natural as well as any man-made microwave emitters, and ground clutter contamination (Hubbert et al., 2003). Furthermore, non-polarimetric radars can cause additional errors as single power measurements can yield ambiguous results in the interpretation of cloud microphysics (Golestani et al., 1995; Bringi et al., 1991). An extensive calibration and validation (cal/val) campaign is an integral part of any successful modern-day weather radar operation (AMS meeting, 2001; Melnikov et al., 2003; Yilmaz et al., 2005). A cal/val program may include a combination of internal and external methods to calibrate radar return parameters and final products. Polarimetric capability further provides cross-calibration means to improve rainfall estimation, to classify precipitation types, and to differentiate weather echoes from those returned from biological scatterers (Yilmaz et al., 2005). Iranian Meteorological Organization (IRIMO) weather radar network — a combination of eight S- and C-band Doppler weather radars is designed to detect and track local mesoscale as well as large-scale meteorological systems entering the country from north-west, west, and south-west regions (Golestani et al., 2000; Golestani et al., 1999). To this date IRIMO network has not demonstrated a successful cal/val program. Tehran C-band polarimetric Doppler weather radar, which is the subject of this study, has not been able to utilize polarimetric capability to constrain ambiguities and enhance radar products. Furthermore, RFI sources have severely contaminated and practically disabled this radar along 45° northeast look angle over major population region. Anomalous propagation and beam blocking errors are also evident on the radar return. This paper presents a processing scheme to identify and remove RFI noise from radar returns. Processing algorithms for radar returns under this scheme are also presented. The algorithm consists of 1) anomalous points exceeding a simple upper threshold are identified and removed from the data set, 2) to minimizing beam broadening error, we divide the entire data domain into equal matrices 3) with respect to beam geometry all boxes are compared with the neighboring beam angles along the vertical structure of clouds, 4) for testing slantwise convection all boxes at lower tilt angle are examined with the 8 neighboring cells at upper tilt to extract the existence of symmetric instability, 5) finally by producing a history map of reflectivity, and statistical analysis of RFI noise, a spectral filter detects and removes RFI noises form radar data. This algorithm was implemented on a squall line data detected by the Tehran weather radar on the 31st of March 2009. The results of the data analysis show the ability of the processing filters in removing RFI noise and detecting convective line and stratiform clouds.

کلیدواژه‌ها [English]

  • Tehran weather radar
  • C band
  • S band
  • Precipitation
  • Noise
  • reflectivity
صفر، م.، احمدی گیوی، ف.، و محبالحجه، ع.، 1391، بررسی اثر گوارد دادههای رادار در مدل عددی ARPS در شبیهسازی بارش حاصل از سامانه همدیدی 31 مارس 2009 در منطقه تهران: مجله ژئوفیزیک ایران، 6(3)، 94-112.

American Meteorological Society, 2001, Radar Calibration and Validation Specialty Meeting: Albuquerque, New Mexico, U.S.A., 13–14 January 2001.
Atlas, D., 1990, Radar in Meteorology: American Meteorological Society, Boston, 806pp.
Bebbington, D., Rae, S., Bech, J., Codina, B., and Picanyol, M., 2007, Modeling of weather radar echoes from anomalous propagation using a hybrid parabolic equation method and NWP model data: Natural Hazards and Earth System Sciences, 7, 391–398.
Bech, J., Gjertsen, U., and Haase, G., 2007, Modeling weather radar beam propagation and topographical blockage at northern high latitudes: Quart. J. Roy. Meteorol. Soc., 133, 1191–1204.
Bringi, V. N., Chandrasekar, V., Meischner, P., Hubbert, J., and Golestani, Y., 1991, Polarimetric radar signature of precipitation at S and C bands: Special issue of IEE proceedings on radar clutter and multipath propagation (part F), 138(2), 109–119.
Einfalt, T., Szturc, J., and Ośródka, K., 2010, The quality index for radar precipitation data: A tower of Babel: Atmos. Sci. Lett., 11, 139–144.
Gekat, F., Meischner, P., Friedrich, K., Hagen, M., Koistinen, J., Michelson, D. B., and Huuskonen, A., 2004, The state of weather radar operations, networks and products: In: Weather radar. Principles and advanced applications, P. Meischner, (Ed.), 1–51, Springer–Verlag, Berlin–Heidelberg, Germany.
Germann, U., and Joss, J., 2004, Operational measurement of precipitation in mountainous terrain: In: Weather radar. Principles and advanced applications, P. Meischner, (Ed.), 52–77, Springer–Verlag, Berlin–Heidelberg, Germany.
Golestani, Y., Chandrasekar, V., and Keller, J., 1995, Dual polarized staggered PRT scheme for weather radars: Analysis and applications: IEEE Transactions on Geoscience and Remote Sensing, 33(2), 239–246.
Golestani, Y., Noorian, A. M., and Hudak, D. R., 1999, Preliminary Studies for the Deployment of Weather Radar Network in the Islamic Republic of Iran: 29th International Conference on Radar Meteorology, Montreal, Canada.
Golestani, Y., Noorian, A. M., and Hudak, D. R., 2000, Design considerations for the two C- and one S-band Doppler weather radars in the Islamic Republic of Iran: Phys. Chem. Earth (B), 25, 991–994.
Harrison, D. L., Driscoll, S. J., and Kitchen, M., 2000, Improving precipitation estimates from weather radar using quality control and correction techniques: Meteor. Appl., 7, 135–144.
Hubbert, J. C., Bringi, V. N., and Brunkow, D., 2003, Studies of the polarimetric covariance matrix: Part I: Calibration methodology: J. Atmos. Ocea. Tech., 20(5), 696–706.
Joss, J., and Wessels, H., 1990, Ground clutter suppression for weather radar data: COST Tech. Rep. 73/WD/130, 6 pp.
Lee, R., Della Bruna, G., and Joss, J., 1995, Intensity of ground clutter and echoes of anomalous propagation and its elimination: Reprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 651–652.
Melnikov, V. M., Zrnić, D. S., Doviak, R. J., and Carter, J. K., 2003, Calibration and performance analysis of NSSL’s polarimetric WSR-88D: National Severe Storm Laboratory.
Rosenfeld, D., Amitai, E., and Wolff, D. B., 1995, Classification of rain regimes by the three-dimensional properties of reflectivity fields: J. Appl. Meteor., 34, 198–211.
Rossa, A., Bruen, M., Frühwald, D., Macpherson, B., Holleman, I., Michelson, D., and Michaelides, S., 2005, Use of Radar Observations in Hydrological and NWP Models. COST Action 717: Final Report, COST Office, Luxembourg.
Rossa, A., Haase, G., Keil, C., Alberoni, P., Ballard, S., Bech, J., Germann, U., Pfeifer, M., and Salonen, K., 2010, Propagation of uncertainty from observing systems into NWP: COST-731 Working Group 1: Atmos. Sci. Lett., 11, 145–152.
Šalek, M., Cheze, J.-L., Handwerker, J., Delobbe, L., and Uijlenhoet, R., 2004, Radar techniques for identifying precipitation type and estimating quantity of precipitation. COST Action 717: Final Report, COST Office, Luxembourg.
Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., and Darden, R. W., 1999, Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation: Water Resour. Res., 35, 2487–2503.
Steiner, M., and Smith, J. A., 2002, Use of three-dimensional reflectivity structure for automated detection and removal of non-precipitation echoes in radar data: J. Atmos. Ocea. Tech., 19, 673–686.
Szturc, J., Ośródka, K., and Jurczyk, A. 2009, Quality index scheme for 3D radar data volumes: Proceedings of 34th Conference on Radar Meteorology AMS, 5–9 October, Williamsburg, VA.
Yilmaz, K., Hogue, T., Hsu, K., Sorooshian, S., Gupta, H., and Wagener, T., 2005, Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting: J. Hydrometeor., 6, 497–517.
Zappa, M., Beven, K. J., Bruen, M., Cofiño, A. S., Kok, K., Martin, E., Nurmi, P., Orfila, B., Roulin, E., Schröter, K., Seed, A., Szturc, J., Vehviläinen, B., Germann, U., and Rossa, A., 2010, Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2: Atmos. Sci. Lett., 11, 83–91.
Zmic, D. S., 2005, Calibrating differential reflectivity on the WSR-88D. Part I: NSSL Report, May 2005.
Zmic, D. S., 2007: Calibrating differential reflectivity on the WSR-88D. Part II: NSSL Report, April 2007.