نقش گردش‌های پوشن‌سپهر در بی‌هنجاری‌های اقلیمی‌ زمستان‌های 1386 و 1388‌

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه یزد، یزد، ایران

2 موسسه ژئوفیزیک، دانشگاه تهران، ایران

چکیده

در این تحقیق، با استفاده از داده‌های NCEP/NCAR، نقش گردش‌های پوشن‌سپهر در بی‌هنجاری‌های زمستان‌ 1386 و 1388 بررسی می‌شود. بی‌هنجاری‌ میدان‌های باد و دما حاصل از برهم‌کنش امواج سیاره‌ای وردسپهر و شارش میانگین ابتدا در پوشن‌سپهر زمستانه ظاهر می‌شود و سپس گسترش پایین‌سوی آنها اقلیم سطحی را تحت تاثیر قرار می‌دهد.
سری زمانی هر کمیت هواشناختی شامل مجموعه‌ای از مدهای تغییرپذیری است. استخراج و تعیین سهم هر مد تغییرپذیری برای یک سری زمانی از یک کمیت دلخواه هواشناختی با استفاده از تابع‌های متعامد تجربی امکان‌پذیر است. نکته‌ بارز در مقایسه‌ مقادیر واریانس بین دو زمستان مورد بررسی، آن است که در زمستان 1386 واریانس مد پیشروی بی‌هنجاری ارتفاع در تراز hPa10 بزرگ‌تر از مقدار مشابه آن در زمستان 1388 است که این بیانگر قوی‌تر بودن تاوه‌ قطبی در این تراز در زمستان 1386 است. وجود تاوه‌ قطبی قوی تر در زمستان 1386 و رخدادهای گرمایش ضعیف، با بروز زمستانی سرد در منطقه شامل ایران همراه بوده است. ازسوی‌دیگر، حضور تاوه‌ قطبی به‌نسبت ضعیف در زمستان 1388، گرمایش زودرس و انتقال الگوی دو قطبی دما به عرض‌های بالاتر، موجب بروز زمستانی گرم در منطقه‌ شامل ایران شده است.
نتایج حاصل از تابع‌های متعامد تجربی و فرایافت‌های اویلری نشان می‌دهد که وقوع (فقدان) گرمایش ناگهانی ضعیف یا قوی در اثنای زمستان موجب جابه‌جایی الگوی دوقطبی دمای سرد به عرض‌های پایین‌تر (بالاتر) و در نتیجه بروز زمستان سرد (گرم) در منطقه‌ می‌شود.  
 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

The role of stratospheric circulations in climate anomalies of 2007-2008 and 2009-2010 winters

نویسندگان [English]

  • Seyed Majid MirRokni 1
  • Ali Reza Mohebalhojeh 2
  • Farhang Ahmadi-Givi 2
چکیده [English]

The role of stratospheric circulations in large-scale and intense anomalies over a large-part of Asia including Iran in Winters of 2007–2008 and 2009–2010 was investigated using NCEP/NCAR reanalysis data available four times a day and in daily and monthly averages for 17 pressure levels  as well as for isentropic and sigma levels. The spatial resolution of the data set was 2.5×2.5 in the longitudinal and latitudinal directions which provided adequate resolution to study large-scale dynamical processes.
    Anomalies in the wind and temperature fields induced by the interaction of vertically-propagating planetary waves with a stratospheric mean flow first appear in the winter stratosphere and subsequently with downward propagation, they affect the surface climate. The time series of each meteorological quantity contains a set of variability modes. Using Empirical Orthogonal Functions (EOFs), it is possible to extract and determine the contribution of each variability mode in the time series of a given meteorological quantity. The highest variability is contained in the first mode of variability, also called the leading mode. The vertical and horizontal structures of the resulting spatial patterns illustrate the internal variability of each atmospheric layer, telleconnection patterns as well as the interactions of atmospheric layers. Using EOFs, the stratosphere–troposphere interactions in the two above winters were investigated. Comparing the two winters, it was found that the variance of the leading mode of the 10-hPa gepotential height was larger in Winter 2007–2008, indicating a stronger polar vortex than that in Winter 2009-2010. With regard to this situation at various levels, it was shown that the cold winter in the region in Winter 2007–2008 coincided with the existence of a strong polar vortex and minor sudden stratospheric warming (SSW). In Winter 2009–2010, the reverse is true. That is, the warm winter in the region coincided with the existence of a weak polar vortex, early SSW and the displacement of the dipolar pattern of a temperature anomaly to higher latitudes.
    As an important tool in understanding the time evolving flows, Eulerian diagnostics were employed to corroborate the results obtained using the statistical method. The results for a temperature anomaly at 850 hPa were consistent with surface observations in which the winters 2007–2008 and 2009-2010 were, respectively, cold and warm over the region. The changes in the temperature pattern in these two winters were believed to be related to the effects of a stratospheric circulation in the surface climate. The SSW events were classified according to the definition provided by the World Meteorological Organization. The SSW events were classified and the stratosphere–troposphere interaction was investigated using Eulerian diagnostics. Consistent with the statistical analysis, the time evolution of Eulerian diagnostics illustrates marked differences in the behavior of a polar vortex in the two winters.
    The results obtained using EOFs and Eulerian diagnostics showed that in Winter 2007–2008 the occurrence of a major or minor sudden stratospheric warming was associated with the displacement of a dipolar pattern of temperature to lower (higher) latitudes and thus a prolonged cold anomaly over Iran. The opposite situation was found to prevail in Winter 2009–2010.
 
 
 

کلیدواژه‌ها [English]

  • Troposphere–stratosphere interaction
  • Eulerian diagnostics
  • Empirical Orthogonal Functions
  • leading mode
  • Polar Vortex
  • cold winter

حسین‌پور، ف.، 1388، بررسی بی‌‌هنجاری آب و هوایی زمستان 1386 از دیدگاه دینامیک بزرگ‌‌مقیاس: پایان‌‌نامه کارشناسی ارشد هواشناسی، موسسه ژئوفیزیک دانشگاه تهران.

محمدآبادی کمره‌‌ای، آ.، 1390، بررسی بی هنجاری آب و هوایی زمستان 1388 از دیدگاه دینامیک بزرگ‌‌مقیاس و مقایسه با زمستان 1386: پایان‌‌نامه کارشناسی ارشد هواشناسی، موسسه ژئوفیزیک دانشگاه تهران.

Baldwin, M. P., and Dunkerton, T. J., 1999, Downward propagation of the Arctic oscillation from the stratosphere to the troposphere: J. Geophys. Res., 104, 30937−30946.

Bretherton, C. S., Holton, J. R., Pyle, J. A., and Curry, J., 2003, Empirical orthogonal functions and singular vectors: Academic Press Inc.

Cai, M., and Ren, R-. C., 2007, Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability: J. Atmos. Sci., 64, 1880–1901.

Christiansen, B., 2001, Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis: J. Geophys. Res., 106, 27307−27322.

Jolliffe, I. T., 2002, Principal Component Analysis: Springer.

Kalnay, E., and Coauthors, 1996, The NCEP/NCAR 40-Year Reanalysis Project: Bull. Amer. Meteor. Soc., 77, 437–472.

Kolstad, E. W., Breiteig, T., and Scaif, A. A., 2010, The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere: Quart. J. R. Meteor. Soc., 136(649), 886–893.

Lorenz, E. N., 1956, Empirical orthogonal functions and statistical weather prediction: Sci. Rep. No. 1, Statistical Forecasting Project, M.I.T., Cambridge.

Panofsky, H. A., and Brier, G. W., 1968, Some Applications of Statistics to Meteorology: Pennsylvania State University Press.

Preisendorfer, R. W., 1988, Principal Component Analyses in Meteorology and Oceanography: Elsevier.

Scaife, A. A., Knight, J. R., Vallis, G. K., and Folland, C. K., 2005, A stratospheric influence on the winter NAO and North Atlantic surface climate: Geophys. Res. Lett., 32, 715–720.

Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A. , and Knight, J. R., 2008, European climate extremes and the North Atlantic Oscillation: J. Climate, 21, 72–83.

Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M., 2002, Stratosphere connection to northern hemisphere wintertime weather: implications for prediction: J. Climate, 15, 1421−1428.

Thuburn, J., and Lagneau, V., 1999, Eulerian mean, contour integral, and finite−amplitude wave activity diagnostics applied to a single−layer model of the winter stratosphere: J. Atmos. Sci., 56, 689−710.

Wilks, D. S., 2006, Statistical methods in the atmospheric sciences: Elsevier.