تجزیه طیفی با قدرت تفکیک زیاد و کاربرد آن در آشکارسازی سایه‌های بسامد‌‌ کم ناشی از مخازن گازی

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

چکیده

به‌دلیل خاصیت ناایستا بودن داده‌های لرزه‌ای در اثر عبور از داخل زمین، از تبدیل‌های زمان – بسامد‌‌ به‌طور گسترده‌ای در پردازش و تفسیر این داده‌ها استفاده می‌شود. روش‌های متفاوتی برای نمایش زمان – بسامد‌‌ سیگنال‌ها معرفی شده‌ اسیت. هر‌یک از این روش‌ها دارای نقاط ضعف و قوت مخصوصی هستند. بنابراین استفاده از ابزارهایی که بتواند علاوه بر حفظ نقاط قوت این روش‌ها، نقاط ضعف آنها را برطرف کند، بسیار سودمند است.
در این مقاله از یک عملگر واهمامیخت دوبُعدی مبتنی بر توزیع ویگنر – وایل برای واهمامیخت طیف‌نگاره تبدیل فوریه زمان‌کوتاه استفاده شده است و نمایش زمان – بسامد‌‌ با قدرت تفکیک زیاد و بدون جملات متقاطع به‌دست آمده است. کارایی‌‌ این روش تجزیه طیفی روی داده‌های مصنوعی مورد بررسی قرار گرفت و با نتایج سایر روش‌های متداول مقایسه شد. همچنین از این روش برای آشکارسازی سایه‌های بسامد‌‌ کم مربوط به مخازن گازی، در یکی از میادین گازی جنوب غربی ایران در مقایسه با تبدیل فوریه زمان‌کوتاه استفاده شده است. نتایج نشان می‌دهد که روش پیش‌گفته دارای قدرت تفکیک زیاد است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

High resolution spectral decomposition and its application in the illumination of low-frequency shadows of a gas reservoir

نویسندگان [English]

  • Amin Roshandel Kahoo
  • Ali Nejati Kalateh
چکیده [English]

Because of the non-stationary property of seismic signals, time-frequency transforms have widely used in seismic data processing and interpretations. Spectral decomposition can reveal the characteristics that are not easily observed in the time representation or the frequency representation alone. Conventional spectral decompositions such as short-time Fourier transform (STFT) and Wigner–Ville distribution (WVD) have some restrictions, such as Heisenberg uncertainty principle and cross terms. In this paper, we used the deconvolution of a short-time Fourier transform spectrogram to overcome the mentioned restrictions.
The resolution of a time–frequency representation using STFT is strongly dependent on the length of the window function. A short window length will result in a good time resolution but a poor frequency resolution; a long window length will result in a poor time resolution but a good frequency resolution.
No window function is used to calculate the WVD of signals. Therefore, WVD has a high resolution in time and frequency simultaneously. However, the existence of the cross–terms has limited the application of this distribution (Boashash, 2003). Auger et al. (1996) introduced the smoothed pseudo WVD (SPWVD) to eliminate these cross-terms. Smoothing the WVD leads to a tradeoff between the time–frequency resolution and cross-term elimination.
When the smoothing function is the WVD of the window function used in STFT, the SPWVD will become the STFT spectrogram (Qiang and Wen-kai, 2010). There are no cross-terms in the STFT spectrogram, and yet it has a low resolution both in time and frequency. Therefore, a 2D deconvolution operator can be used to generate a high time-frequency representation of the signal with no cross-terms. To perform the 2D deconvolution, we used the iterative Lucy–Richardson algorithm. The resulted spectrogram after 2D deconvolution is nominated as deconvolutive STFT or DSTFT.
The efficiency of this method is evaluated by applying on both synthetic and real seismic data. The results of synthetic example show that the deconvolutive short-time Fourier transform spectrogram (DSTFT) has the fine resolution as the Wigner–Ville distribution (WVD) has but with no cross-terms.
Castagna et al. (2003) used the spectral decomposition to detect the low-frequency shadows associated with hydrocarbons. In fact, these shadows are often related to an additional energy occurring at low frequencies, rather than the preferential attenuation of higher frequencies. One possible explanation is that these are locally converted shear waves that have traveled mostly as P-waves and thus arrive slightly after the true primary event.
We used a deconvolutive short-time Fourier transform spectrogram to illuminate the low-frequency shadow corresponding to a gas reservoir at one of the gas fields in the South West of Iran. The results of the real data example show that the DSTFT analysis has a much better resolution than the conventional spectral decomposition and can potentially be used to detect hydrocarbons from a gas reservoir directly using low-frequency shadows.
 
 

کلیدواژه‌ها [English]

  • spectral decomposition
  • Deconvolution
  • Wigner–Ville distribution
  • short-time Fourier transform
  • low-frequency shadow
روشندل، ا.، 1388، بهبود تبدیل‌های زمان-فرکانس (بسامد)‌‌ در مطالعه داده‌های لرزه‌ای، پایان‌نامه دکتری، موسسه ژئوفیزیک دانشگاه تهران.

غلامی، ا.، 1389، بررسی کاربرد تبدیل موجک پیوسته زمان-فرکانس(بسامد)‌‌ بر روی داده‌های لرزه‌ای یکی از مخازن هیدروکربنی ایران، پایان‌‌نامه کارشناسی ارشد، مؤسسه ژئوفیزیک دانشگاه تهران.

Askari, R., and Siahkoohi, H. R., 2008, Ground roll attenuation using the S and x-f-k transforms: Geophysical Prospecting, 56, 105-114.

Auger, F., Flandrin, P., Goncalves, P., and Lemoine, O., 1996, Time-frequency toolbox for use with MATLAB, CNRS, France.

Boashash, B., 2003, Time frequency signal analysis: A comprehensive reference, Elsevier, Oxford, UK.

Castagna, J. P., Sun, S. and Siegfried, R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. The Leading Edge, 22, 120-127.

Cooper, G. R. J., 2006, Interpreting potential field data using continuous wavelet transforms of their horizontal derivatives: Computers & Geosciences, 32, 984-992.

De Oliveira Lyrio, J. C. S., Tenorio, L., and Li, Y., 2004, Efficient automatic denoising of gravity gradiometry data: Geophysics, 69, 772-782.

Fedi, M., Quarta, T., 1998, Wavelet analysis for the regional residual and local separation of potential field anomalies: Geophysical Prospecting, 46, 507-525.

Gabor, D., 1946, Theory of communication: Journal of the Institution of Electrical Engineering, 93, 429-457.

Leite, F. E. A., Montagne, R., Corso, G., Vasconcelos, G. L., and Lucena, L. S., 2008, Optimal wavelet filter for suppression of coherent noise with an application to seismic

 

      data: Physica A: Statistical Mechanics and its Applications, 387, 1439-1445.

Mallat, S., 1999, A wavelet tour of signal processing, 2nd edition, Elsevier, USA.

Martelet, G., Sailhac, P., Moreau, F., Diament, M., 2001, Characterization of geological boundaries using 1-D wavelet transform on gravity data: theory and applications to the Himalayas: Geophysics, 66, 1116-1129.

Matos, M. C., P.Osorio, E. C. Mundim, and Moraces, M., 2005, Characterization of thin beds through joint time-frequency analysis applied to a turbidite reservoir in Campos Basin, Brazil: 75th SEG meeting, Houston, Expanded Abstracts, 1429–1432.

Qiang, Z., and Wen-kai, L., 2010, Spectral decomposition using deconvolutive short time Fourier transform spectrogram: 80th SEG meeting, Denver, Expanded Abstracts, 1581–1585.

Roshandel Kahoo, A., and Siahkoohi, H. R., 2009(a), Random noise suppression from seismic data using time-frequency peak filtering: 71st EAGE meeting, Amsterdam, Extended Abstracts.

Roshandel Kahoo, A., and Siahkoohi, H. R., 2009(b), Gas detection from AVO analysis in time-frequency domain: 71st EAGE meeting, Amsterdam, Extended Abstracts.

Salajegheh, F., Roshandel Kahoo, A., and Siahkoohi, H. R., 2010, Interpretation of 2-D gravity data using 2-D Continuous wavelet transform: 72st EAGE meeting, Barcelona, Extended Abstracts.

Sinha, S., Routh, P. S., Anno, P. D., and Castagna, J. P., 2005, Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70, P19-P25.

Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum:The S transform: IEEE Trans. Signal Processing., 44, 998–1001..

Ville, J., 1948, Theorie et applications de la notion de signal analytique: Cables et Transm, 2A(1), 61-74.

Wigner, E. P., 1932, On the quantum correlation for thermodynamic equilibrium: Phys. Rev., 40, 749-759.