تاثیر فشار همه‌جانبه بر سرعت موج‌های کشسان و مدول‌های یانگ دینامیک و استاتیک نمونه‌های سنگ آهک سروک

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه زمین‌شناسی دانشگاه خوارزمی، تهران، ایران

2 موسسه ژئوفیزیک‌دانشگاه تهران، ایران

3 گروه زمین‌شناسی دانشگاه اصفهان، ایران

4 شرکت ملی مناطق نفت‌خیز جنوب، اهواز، ایران

چکیده

در این پژوهش، به منظور بررسی تاثیر فشار همه‌جانبه بر سرعت امواج کشسان و مدول‌های یانگ دینامیکی (Ed) و استاتیک (Es)، آزمایش فراصوتی (اُلتراسونیک) تحت فشار همه‌جانبه روی مغزه‌های سنگ آهک سروک مربوط به یکی از چاه‌های نفتی جنوب غرب ایران صورت گرفت. با نصب کُرنش‌سنج، تغییرات طولی نمونه در حین آزمایش ثبت و Es در فشارهای متفاوت اندازه‌گیری شد. داده‌های به‌دست آمده از این آزمایش‌ها نشان‌ دهنده افزایش سرعت امواج و متعاقب آن افزایش Ed، با افزایش فشار همه‌جانبه است که این روند افزایشی در فشارهای کمتر از 15 مگاپاسکال بیشتر است و حالت غیرخطی دارد. در فشارهای بالاتر، این روند افزایشـی کاهش می‌یابد و تغییـرات سرعـت با فشار خطی می‌شود. در این تحقیق ملاحظه شد که با افزایش فشار همه‌جانبه نسبت Ed/Es به‌صورت نمایی کاهش می‌یابد که این پدیده مبین تاثیر بیشتر فشار همه‌جانبه در افزایش Es نسبت به Ed است. براساس مدل پیشنهاد شده در این تحقیق، با دقت خوبی می‌توان Esسازند را براساس Ed در فشارهای همه‌جانبه گوناگون برآورد کرد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of the confining pressure on the elastic wave velocity, the dynamic and static Young’s moduli of Sarvak limestone specimen

نویسندگان [English]

  • Alireza Najibi 1
  • Mohammad Reza Asef 1
  • Majid Nabi-Bidhendi 2
  • Rasul Ajalloeian 3
  • Gholam Abbas Safian 4
چکیده [English]

Young’s modulus measured as the slope of a stress-strain curve under static loading conditions (Es) in the lab is an essential rock mechanical parameter for geomechanical analyses of oil wells. Examples of these analyses are wellbore stability analysis, estimation of the in-situ stresses, and the reservoir compaction survey. However, Es is obtained by destructive laboratory tests on selected core samples along the well length. Therefore, information on the value of Es along the well length is often discontinuous and limited to a cross well with a core. On the other hand, based on the theory of elasticity, well-known equations are available to calculate Young’s modulus under dynamic (compressional and shear wave) loading conditions which is the dynamic Young’s modulus (Ed). Nevertheless, Ed for intact core specimens is very often two or three times or more larger than Es. This is partly because in case of a dynamic loading strain, the amplitude is 10-6 or 10-7, while in the static moduli strain, amplitude is typically 10−2–10−3. Static moduli, measured as the slopes of the stress–strain curves, differ from small strain amplitude dynamic (elastic) moduli because of plasticity or nonlinear effects. Also, porosity and micro-cracks in rock core specimens affect this phenomenon. Accordingly, many attempts have been made to predict Es based on other nondestructive parameters namely compressional and shear wave velocities (Vp and Vs) in the lab. Fortunately, geophysical logs in many hydrocarbon reservoirs provide Vp and Vs data continuously along the well length. Therefore, it is possible to calculate Ed continuously in the well. For this reason empirical equations have been developed to estimate Es based on Ed along the well length.
Furthermore, a correlation between Ed and Es at in-situ conditions is more difficult than in the lab. This is because Vp and Vs measurements increase by increasing in-situ confining stresses. This is in turn because confining stresses reduce the anisotropy elements such as porosity and micro-cracks. As a result, Vp and Vs Ed often will increase with the burial depth. Similarly, laboratory experiments indicate that stress-strain measurements on rock core specimens under the static loading and triaxial confining stresses (similar to the well depth) will increase Es with an increase in the confining stresses.
In this research, laboratory experiments were carried out on limestone rock core specimens of Sarvak Formation obtained from an oil well in the South West of Iran. The specimens were placed in a cell under confinement. Compressional and shear wave velocities at different confining stresses were measured. Experiments were accomplished in the dry conditions up to a maximum confining pressure of 50 MPa. Simultaneously, the values of the axial load and axial strain were recorded. It was noticed that with an increase in confining stresses, Vp and Vs will increase. Likewise, at lower confining stresses, Vp and Vs increase exponentially while after a critical confining stress of 15 MPa, exponential equation will turn to linear. Constants of the linear and exponential equations for Sarvak formation were extracted with excellent accuracy.
Based on these measurements, Ed and Es were calculated at different levels of confining stresses. It was observed that with an increase in confinement, the ratio of Ed/Es will decrease and approach to unity at higher confinements. This means that with an increase in confining stresses, Es will increase faster (compared to Ed). According to the findings of this research, a correlation between Ed and Es should be made with extreme care to account for the impact of the confining stress at any depth of interest. This is very often ignored throughout the well length. Finally, based on laboratory experiments, an empirical equation was developed to predict Es from Ed at different confining stresses.

کلیدواژه‌ها [English]

  • Limestone
  • static and dynamic Young’s moduli
  • Confining Pressure
  • elastic wave velocity
Anselmetti, F. S., and Eberli, G. P., 1993, Controls on sonic velocity in Carbonates: PAGEOPH, 141, 287– 323.

Asef, M. R., and Reddish, D. J., 2001, The impact of confining stress on the rock mass deformation modulus: Géotechnique, 52(4), 235 –241.

Carcione, J., and Tinivella, U., 2001, The seismic response to overpressure: a modelling study based on laboratory, well and seismic data: Geophys. Prospect, 49, 523–39.

Chang, C., Zoback, M. D., and Khaksar, A., 2006, Empirical relations between rock strength and physical properties in sedimentary rocks: Journal of Petroleum Science and Engineering, 51, 223–237.

Cheng, C. H., and Johnston, D. H., 1981, Dynamic and static moduli: Geophys. Res. Let., 8, 39-42.

Duffy, J., and Mindlin, R., 1957, Stress–strain relations and vibrations of a granular medium: J. Appl. Mech., 24, 585–293.

Eberhart-Phillips, D., Han, D-H., and Zoback, M. D., 1989, Empirical relationship among seismic velocity, effective pressure, and clay content in sandstones: Geophysics, 54, 82–89.

Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., and Risnes, R., 2008, Petroleum Related Rock Mechanics: 2nd Ed, Amesterdam, Elsevier.

Gangi, A. F., and Carlson, R., 1996, An asperity-deformation model for effective pressure: Tectonophysics, 256, 241–251.

Ji, S. C., Wang, Q., Marcotte, D., Salisbury, M. H., Xu, Z., 2007, P wave velocities, anisotropy and hysteresis in ultrahigh- pressure metamorphic rocks as a function of confining pressure: Journal of Geophysical Research, 112, B09204, doi: 10.1029/2006JB004867.

Jizba, D. L., 1991, Mechanical and Acoustical Properties of Sandstone and Shales: PhD thesis, University of Stanford.

Johnson, P. A., and Rasolofosaon, P. N., 1996, Nonlinear elasticity and stress-induced anisotropy in rocks: J. Geophys. Res., 101, 3113–3124.

Kaselow, A., and Shapiro, S., 2004, Stress sensitivity of elastic moduli and electrical resistivity in porous rocks: J. Geophys. Eng, 1, 1–11.

Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook, Tools for Seismic Analysis in Porous Media: Cambridge University Press.

Mavko, G., Mukerji, T., and Godfrey, N., 1995, predicting stress-induced velocity anisotropy in rocks: Geophysics, 60, 1081–1087.

Sarkar, D., Bakulin, A., and Krantz, R. L., 2003, Anisotropic inversion of seismic data for stressed media, theory and a physical-modeling study on Berea sandstone: Geophysics, 68, 690–704.

Wang, Q., Ji, S. C., Salisbury, M. H., Pan, M. B., Xia, B., and Xu, Z. Q., 2005, Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China), Implications for seismic properties of sub ducted slabs and origin of mantle reflections: Tectonophysics, 398, 67– 99.

Walsh, J., and Brace, W., 1966, Elasticity of rock: a review of some recent theoretical studies: Rock Mechanics and Engineering Geology, 4, 283 – 297.

Wepfer, W. W., and Christensen, N. I., 1991, A seismic velocity-confining pressure relation, with applications: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28, 451– 456.