مکان‌یابی مجدد زمین‌لرزه اصلی 29 آذرماه 1389 محمدآباد ریگان Mn = 6.5 و پس‌لرزه‌‌‌‌های حاصل از آن به روش غیرخطی

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

موسسه ژئوفیزیک‌دانشگاه تهران، ایران

چکیده

در تحقیق حاضر با استفاده از روش غیرخطی به مکان‌یابی مجدد زمین‌لرزه Mn = 6.5؛ML = 6.2 ؛ Mw = 6.3، محمدآباد ریگان و پس‌لرزه‌‌‌‌های حاصل از آن می‌‌پردازیم. زمین‌لرزه ریگان شامل 296 پس‌لرزه‌‌ ثبت شده در مرکز لرزه‌نگاری کشوری (IRSC) است که در برخی موارد بزرگی پس‌لرزه‌‌‌‌ها نزدیک به زمین‌لرزه اصلی بوده است. داده‌‌های مورد استفاده در این تحقیق از ترکیب اطلاعات زمان رسید فاز‌‌های ثبت شده در ایستگاه‌‌های مرکز لرزه‌نگاری کشوری (IRSC) و پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله (IIEES) به‌دست آمده است. به‌این‌ترتیب با بررسی پس‌لرزه‌‌‌‌ها براساس زمان وقوع و بزرگای آنها و استفاده از قانون آموری در توصیف پس‌لرزه‌‌‌‌ها مشخص شد که زمین‌لرزه‌‌های ناحیه ریگان شامل دو زمین‌لرزه اصلی است که با عنوان زمین‌لرزه اصلی دوم شناخته شده است. به‌این‌ترتیب مکان‌یابی زمین‌لرزه‌‌ها برای دو پنجره زمانی متفاوت و به روش غیرخطی صورت گرفت. پنجره زمانی اول شامل زمین‌لرزه اصلی و 137 پس‌لرزه‌‌ آن تا رخ دادن زمین‌لرزه اصلی دوم و پنجره زمانی دوم شامل زمین‌لرزه اصلی دوم و 159 پس‌لرزه‌‌ به وقوع پیوسته پس از آن است. به‌‌منظور بهبود نتایج مکان‌یابی فقط پس‌لرزه‌‌‌‌هایی مورد بررسی قرار گرفته‌‌اند که حداقل در 5 ایستگاه ثبت شده باشند. بدین‌ترتیب پس از مکان‌یابی مجدد 222 پس‌لرزه‌‌ مشاهده شد که زمین‌لرزه‌‌های به وقوع پیوسته در دو پنجره زمانی، به‌صورت کاملا مجزا از یکدیگر در رومرکز و عمق قرار گرفته‌‌اند. با بررسی‌‌ وضعیت قرارگیری در رومرکز و مقاطع عمقی زمین‌لرزه‌‌ها به‌‌نظر می‌‌رسد که زمین‌لرزه اصلی ریگان به‌‌همراه پس‌لرزه‌‌‌‌های مورد بررسی در پنجره زمانی یک، روی ادامه گسل کهورک و در ناحیه جنوب شرقی گسل فعال بم به وقوع پیوسته‌‌اند. همچنین قرارگیری پس‌لرزه‌‌‌‌های با بزرگای Mn > 4 در ادامه گسل کهورک می‌‌تواند نشان‌دهنده به وقوع پیوستن دو زمین‌لرزه اصلی روی ادامه گسل کهورک باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Relocation of the aftershocks of Mohamad Abad Rigan Earthquake December 20, 2010, (Mn = 6.5) using a nonlinear method

نویسندگان [English]

  • Vahid Maleki
  • Zaher Hossein Shomali
  • Mohammad Reza Hatami1
چکیده [English]

Major earthquakes are often associated with large earthquakes which have a magnitude smaller than the main shock known as aftershocks. The occurrence of aftershocks with different magnitudes and times is a random process and therefore in the area affected by the main shock, it can cause greater damage than the main shock, and hence they are very important.
Study of aftershocks can be useful to get information from tectonic activites and causative faults. Many studies have considered the aftershocks of large earthquakes, such as Omori (1894), Otsu (1961) and kisslinger (1996). Among the aftershock studies, the exact relocation of the main earthquake and its aftershocks help us find the causative fault and the releasing energy associated with that fault. Many studies have used relocation methods to examine the aftershocks. Some of these methods are Hong et al (2008), Hugh et al (2009) and Zhao et al (2011).
Due to the complexity of the earth sub-layers and the three-dimensional structure of the crustal velocity and also the seismic wave path from the source to stations, there is a nonlinear relationship between the arrival time of seismic waves at the stations and the hypocenter of the earthquake. In order to simplify the earthquake location problem solving, most methods and programs use linearized relationships. Most of these methods and algorithms are based on the Geiger’s principles (Geiger, 1912). Using the linearized relationships reduces the accuracy of earthquake location due to losing the higher terms of Taylor series. It may also lead to failure in determining the location of earthquakes using a suboptimal network, e.g. where the earthquake is located outside the seismic network. Thurber (1985) showed that when the depth of an earthquake was smaller than the closest distance to the station, determining the focal depth was not possible in linearized methods. Furthermore, using higher terms of Taylor series is required to calculate higher degree derivatives, which are very complex and sometimes impossible, using a three-dimensional velocity model.
In order to avoid calculating the partial derivatives, Tarantola and Valette (1982) presented a method that determines the location of earthquakes with fully non-linear relationships with no need to calculate the partial derivatives. The basic theory of nonlinear probabilistic method to determine the location of the earthquakes was introduced by Tarantola and Valette (1982) and Tarantola (1987). In this study, we used a nonlinear probabilistic method based on Tarantula and Valette theory and NonLinLoc program (Lomax et al, 2000) to relocate the earthquakes.
The Rigan earthquake with Mn = 6.5 occurred on Dec 20, 2010 in the Southeastern region of Iran. After this earthquake, a lot of aftershocks occurred in this area which in some cases the magnitude of aftershocks was in order of the main shock. The largest aftershock with a magnitude Mn = 6.0 occurred after 37 days which itself included a lot of aftershocks. To improve the quality of data, in this study we combined the arrival time data from the Iranian Seismological Center (IRSC) stations and the data from the International Institute of Seismology and Earthquake Engineering (IIEES). Due to the lack of proper station coverage in the southeastern region of Mohammad Abad Rigan, we added IIEES stations data in this area which greatly helped us increase the station coverage.
Regarding the lack of a proper regional velocity model in the Eastern and the Southeastern regions of Iran, we used Tatar et al (2003) local velocity model and determined the depth of Moho based on Dehghani and Makris (1983) study in an order of 55 km.
In this study, we used Omori’s law to specify the energy release in the media and occurrence of aftershocks chronologically. We found that a large number of aftershocks have occurred in two different time windows near the two large earthquakes; in this regard, we divided the data based on these two time windows. The first time window contained the main shock with Mn = 6.5 and aftershocks until the occurrence of second earthquake with Mn = 6.0. The second time window contained the second earthquake Mn = 6.0 and its aftershocks.
In order to get good results, we considered those earthquakes recorded at least by five stations. Finally, we could relocate 222 aftershocks out of 296 aftershocks associated with Rigan area. The relocation results of the earthquakes showed that the two main earthquakes and their aftershocks were distributed in the epicenter and the focal depth separated completely. They also showed two different fault trends. Relocated aftershocks in the first time window showed a fault trend parallel to Kahurak Fault, and aftershocks with Mn > 4 in the second time window showed a fault trend parallel to Kahurak fault.
 

کلیدواژه‌ها [English]

  • Relocation
  • Nonlinear method
  • Aftershock
  • Rigan
درویش زاده، ع، 1371، زمین شناسی ایران، نشر دانش امروز وابسته به انتشارات امیر کبیر، فصل سوم (گسل‌‌های مهم ایران).
محسن پور، ا. و رضاپور م.، 1391، تعیین گسل مسبب زمین‌لرزه 29 آذر ماه 1389 ریگان با استفاده از مکان‌یابی پس‌لرزه‌‌‌‌های آن، پانزدهمین کنفرانس ژئوفیزیک ایران، تهران.
ملکی، و.، 1390، تعیین محل زمین‌لرزه‌‌های ناحیه تهران و البرز مرکزی به روش غیرخطی، موسسه ژئوفیزیک دانشگاه تهران، پایان‌‌‌نامه کارشناسی ارشد.
Ashtari, J. M., 2012, Teleseismic source parameters of the Rigan County Earthquakes and evidence for a new earthquake fault: Pure Appl. Geophys., DOI: 10.1007/s00024-011-0433-9.
Dehghani, G. A., and Makris, J., 1983, The gravity field and crustal structure in Iran, in Geodynamic Project (Geotraverse) in Iran: Rep. 51, Geological Survey, 51-67.
Font, Y., Kao, H., Lallemand, S., Liu, C.-S., and Chiao, L.-Y., 2004, Hypocentral determination offshore Eastern Taiwan using the Maximum Intersection method: Geophys, 158, 655-675.
Geiger, L., 1912, Probability method for the determination of earthquake epicenters from the arrival time only, (translated from Geiger's 1910 German article): Bull. St. Louis Univ., 8(1), 56-71.
Gross, S. J., and Kisslinger, C., 1994, Tests of models of aftershock rate decay: Bull. Seism. Soc. Am., 84, 1571–1579.
Hua, W., Chen, Z., Li, Z., Zhao, C., and Wang, Q., 2009, Seismic triggering and the aftershock distribution of the Wenchuan M8.0 earthquake: Earthquake, 29(1), 33–39.
Huang, Y., Wu, J., Zhang, T., and Zhang, D., 2008, Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence: Science in China (Series D), 51(12), 1703–1711.
Kisslinger, C., 1996, Aftershocks and fault-zone properties, Advances in Geophysics, 38, 1–36.
Lomax, A., and Curtis, A., 2001, Fast, probabilistic earthquake location in 3-D models using oct-tree importance sampling: Geophysics Research. Abstracts, 3, 955.
Lomax, A., Virieux, J., Volant, P., and Berge, C., 2000, Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in Advances in Seismic Event Location Thurber, C. H., and N. Rabinowitz (eds.): Kluwer, Amsterdam, 101-134.
McGuire, J. J., Boettcher, M. S., Jordan, T. H., 2005, Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults": Nature 434 (7032), 445–7. doi:10.1038/nature03377.
Narteau, C., Shebalin, P., and Holschneider, M., 2002, Temporal limits of the power law aftershock decay rate: J. Geophys, 107, Art. No. 2359.
Omori F., 1894, On the aftershocks of earthquakes: Journal of the College of Science, Imperial University of Tokyo, 7, 111–200.
Tatar, M., Hatzfeld, D., Moradi., A. S., Paul, A., 2003, The 2003 December 26 Bam earthquake (Iran), Mw 6.6, aftershock sequence: Geophys, DOI: 10.1111/j.1365-246X.2005.02639.x.
Tarantola, A., and Valette, B., 1982, Inverse problems = quest for information: J. Geophys., 50, 159−170.
Tarantola, A., 1987, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation: Elsevier, Amsterdam, 613p.
Thurber, C. H., 1985, Nonlinear earthquake location: Theory and example: Bull. Seism. Soc. Am., 75(3), 779-790.
Utsu, T., 1961, A statistical study of the occurrence of aftershocks: Geophysical Magazine, 30, 521–605.
Utsu, T., Ogata, Y., and Matsu'ura, R. S., 1995, The centenary of the Omori formula for a decay law of aftershock activity: Journal of Physics of the Earth, 43, 1–33.
Zhao, B., Shi, Y., and Gao, Y., 2011, Relocation of aftershocks of the Wenchuan MS8.0 earthquake and its implication to seismotectonics: Earthquake Science (2011), 24, 107–113.