3D smooth inversion of gravity data and estimation of optimum regularization parameter by unbiased predictive risk estimator (UPRE) method, case study: San Nicolas Sulfide Deposit, Mexico

Document Type : Research Article

Authors

1 Associated professor, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

2 PhD student. Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

3 Assistant professor, Faculty of Engineering, Malayer University, Malayer, Iran

Abstract

Inversion of gravity data is one of the important steps in the interpretation of practical gravity data. The goal of 3D inversion is to estimate the density distribution of an unknown subsurface model from a set of known gravity observations measured on the surface. The inversion result can be obtained by minimization of Tikhonov objective function. Inversion of gravity data is an underdetermined and ill-posed problem. In addition, the non-uniqueness of the solution is the main issue of the inversion. One way to achieve a suitable model result in the inversion is to carry out the inversion with smoothness and smallness constraint. The determination of an optimal regularization parameter is highly important in gravity data inversion. Regularization parameter makes a trade-off between misfit and regularization function. In this paper, an attempt has been made to use Unbiased Predictive Risk Estimator (UPRE) method in selecting the best regularization parameter for 3D inversion of gravity data using Lanczos bidiagonalizatoin (LSQR) algorithm. The UPRE method has been adapted for the solution of inverse problems. The UPRE method is based on a statistical estimator of the mean squared norm of predictive value. In this method, the optimal regularization parameter minimizes the UPRE function. We have developed an algorithm for 3D inversion of gravity data that uses the UPRE method for choosing optimal regularization parameter, and then, the inverse problem is solved by the LSQR algorithm. To evaluate the reliability of the introduced method, the gravity data of a synthetic model contaminated by 5 percent random noise has been inverted using the developed method. The discrepancy principle method was also applied for comparison of its results with the UPRE results. Then, the algorithm was used for inversion of real gravity data obtained from San Nicolas deposit in Mexico. The results of three-dimensional (3D) inversion of gravity data from this sulfide deposit show that the LSQR algorithm can provide an adequate estimate of gravity density and geometry of subsurface structures of mineral deposits. A comparison of the inversion results with geological information clearly indicates that the proposed algorithm can be used for 3D inversion of gravity data to estimate precisely the density distribution and geometry of ore bodies. The obtained results indicate that the discrepancy method is weaker than UPRE method to choose regularization parameter, but the UPRE method finds a unique optimal regularization parameter. Finally, the introduced algorithm has been used for 3D inversion of gravity data from sulfide deposit in San Nicolas. The results are consistent with geological information.

Keywords

Main Subjects


آقاجانی، ح.، مرادزاده، ع.، نجاتی کلاته، ع.، رضایی، م.، 1394، برآورد خودکار پارامتر منظم­سازی به روش تخمین‌گر نااریب خطرپذیری احتمالی در وارون­سازی سه­بعدی مقید داده­های مغناطیسی: نشریه پژوهش­های ژئوفیزیک کاربردی، 3(2)، 145-154.
قائدرحمتی، ر.، مرادزاده، ع.، سونگ­کن، ل.،فتحیان­پور، ن.، 1394، بهبود وارون­سازی دو­بعدی داده­های مگنتوتلوریک با استفاده از روش­های خودکار انتخاب پارامترهای منظم­سازی: مجله ژئوفیزیک ایران، 9(1)، 30-45.
Abedi, M., Gholami, A., Norouzi, G. H., and Fathianpour, N., 2013, Fast inversion of magnetic data using Lanczos bidiagonalization method: Journal of Applied Geophysics, 90, 126–137.
Bauer, F., and Lukas, M. A., 2011, Comparing parameter choice methods for regularization of ill-posed problems: Mathematics and Computers in Simulation, 81(9), 1795-1841.
Blakely, R. J., 1996, Potential Theory in Gravity and Magnetic Applications: Cambridge University Press.
Calvetti, D., Morigi, S., Reichel, L., and Sgallari, F., 2000, Tikhonov regularization and the L-curve for large discrete ill-posed problems: Journal of Computational and Applied Mathematics, 123(1-2), 423-446.
Farquharson, C. G., and Oldenburg, D. W., 2004, A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems: Geophysical Journal International, 156(3), 411-425.
Farquharson, C. G., 2008, Constructing piecewise-constant models in multidimensional minimum-structure inversions: Geophysics, 73(1), K1–K9.
Fullagar, P. K., Pears, G. A., and McMonnies, B., 2008, Constrained inversion of geologic surfaces—pushing the boundaries: The Leading Edge, 27(1), 98-105.
Hutchinson, M. F., 1990, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines: Communication in Statistics - Simulation and Computation, 19(2), 443-450.
Last, B. J., and Kubik, K., 1983, Compact gravity inversion: Geophysics, 48, 713–721.
Li, Y., and Oldenburg, D. W., 1998, 3-D inversion of gravity data: Geophysics, 63(1), 109-119.
Li, Y., and Oldenburg, D. W., 2003, Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method: Geophysical Journal International, 152(2), 251-265.
Martinez, C., Li, Y., Krahenbuhl, R., and Braga, M., 2010, 3D Inversion of airborne gravity gradiometry for iron ore exploration in Brazil: SEG Technical Program Expanded Abstracts 2010, 1753-1757.
 
Moghadasi, M., Nejati Kalateh, A., and Rezaie, M., 2019, Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data: Journal of Mining and Environment, 10(2), 357-364.
Oldenburg, D. W., and Li, Y., 2005, Inversion for applied geophysics: A tutorial: Investigations in Geophysics, 13, 89-150.
Paige, C. C., and Saunders, M. A., 1982, LSQR: An algorithm for sparse linear equations and sparse least squares: ACM Transactions on Mathematical Software (TOMS), 8(1), 43-71.
Phillips, N., Oldenburg, D., Chen, J., Li, Y., and Routh, P., 2001, Cost effectiveness of geophysical inversions in mineral exploration: Applications at San Nicolas: The Leading Edge, 20(12), 1351–1360.
Rene´, R. M., 1986, Gravity inversion using open, reject, and ‘‘shape-of-anomaly’’ fill criteria: Geophysics, 51, 988–994.
Rezaie, M., Moradzadeh, A., Kalate, A. N., and Aghajani, H., 2017, Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method: Pure and Applied Geophysics, 174(1), 359-374.
Tikhonov, A. N., and Arsenin, V. I., 1977, Solutions of ill-posed problems: V. H. Winston & Sons.
Vatankhah, S., Ardestani, V. E., and Renaut, R. A., 2015, Application of the  principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion: Geophysical Journal International, 200(1), 265–277.
Vogel, C. R., 2002, Computational Methods for Inverse‌‌Problems:‌‌SIAM,‌‌U S.