Application of bayesian theory in seismology, case study: the north and north-west of Iran

Document Type : Research Article

Authors

1 Ph.D. student, Department of Petroleum, Mining and Geophysics Engineerin, Faculty of Civil and Earth Resources Engineering, Central Tehran, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Geology, Faculty of Basic Science, Chalous Branch, Islamic Azad University, Chalous, Iran

Abstract

In probability theory and statistics, Bayes' theorem , describes the probability of an event, based on prior knowledge of conditions that might be related to the event. One of the many applications of the theorem is Bayesian inference, a particular approach to statistical inference. When applied, the probabilities involved in the theorem may have different probability interpretations. With Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence. Bayesian inference is fundamental to Bayesian statistics.
    The purpose of this study is a modeling method based on hierarchical structure in prioritizing and providing appropriate solutions to reduce seismic hazards in the Alborz-Azerbaijan province. The basis of the work is based on using natural data and Bayesian statistics which is a powerful tool in modeling both uncertainty and randomness. The method can correctly show the values of peak ground acceleration (PGA) along with the quantities of its distribution function in the region. The input information for the method is seismic catalog from 1900 to 2020 and proper ground motion attenuation law. It should be noted that Iran strong motion network had limited data so that there was a gap of large earthquakes of data. This modeling contains a set of processes and rules for using and specifying variables and relationships between them.
    Based on the results of this study, conducted in the northern and north-western parts of Iran, using Iranian Seismological Center data (http://irsc.ut.ac.ir) that includes 11 stations in the study area, hazard maps were drawn for PGA over a period of next 50 and 475 years, with the highest acceleration in the Alborz region including Tehran and Zanjan and in the Azerbaijan region including Tabriz and Rasht. The correlation between estimated acceleration values by Bayesian method and the values observed by the accelerometer network of Iran Road, Housing and Urban Development Research Center was α=0.95. This indicates that the estimated maximum acceleration is in a good agreement with the observed maximum acceleration. According to the results, the southern part of Alborz (Tehran) and the north-western part of Iran (Tabriz) had the highest PGA. Then, the Bayesian method will give favorable results for probability seismic hazard analysis.
    The results confirm the uncertainty of different parameters of seismic acceleration. Therefore, all of these parameters calculated, indicate that in the west of the Caspian Sea (Rasht city) the lowest value was allocated. Then, Bayesian method with advantages such as considering the relationship between variables, conditions of uncertainty and high flexibility, has the necessary ability to analyze seismic risk in other parts of Iran. This method can also be used in construction projects. In carrying out such renovations, it is necessary to provide step-by-step protocols and rules guidance for application and specification of variables and relationships between them in designing and correcting the model.
 

Keywords

Main Subjects


آقاجری، ل. ا.، علوی، س. ا.، کاوسی، م. ع.، قاسمی، م.، 1396، پهنه­بندی ساختاری و ریخت­زمین‌ساختی کپه داغ خاوری: مجله علوم زمین، 26(104)، 125-131.
آقانباتی، س. ع.، ۱۳۸۳، زمین‌شناسی ایران: انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران.
اسکندری، ف.، 1397، مدل‌سازی سیستم ایمنی بدن با استفاده از شبکه­های بیزی: یافته­های نوین در علوم زیستی، 5(2)، 205-220.
امیرانلوی، ه.، پورکرمانی، م.، دبیری، ر.، قرشی، م.، بوذری، س.، 1396، محاسبه بیشینه شتاب لرزه‌ای گسل شمال تبریز با استفاده از شبیه‌سازی لرزه‌ای چشمه گسل محدود: فصلنامه علوم زمین، 27(105)، 125-131.
بهزاد افشار، ک.، عباس زاده شهری، ع.، منصوری، ر.، 1391، ارزیابی خطر لرزه‌ای در منطقه شمال غرب ایران با استفاده از نرم افزار EZ-FRISK  (روش احتمالاتی): فصلنامه زمین، 7(24)، 161-178.
حسامی آذر، خ.، طبسی، ه.، مبین، پ.، 1390، نقشه گسل­های جنبا در ایران: انتشارات پژوهشگاه بین‌المللی زلزله­شناسی و مهندسی زلزله.
درویش زاده، ع.، 1370، زمین­شناسی ایران: انتشارات ندا، تهران، 902 ص.
سلحشور، ح.، شعبانی، ا.، کاظمیان، ج.، 1396، ارزیابی و محاسبه پارامترهای خطر زلزله با استفاده از رهیافت بیزین در چند ایستگاه منتخب در ایران: کنفرانس بین‌المللی عمران، معماری و شهرسازی ایران معاصر، تهران، ایران.
قاسمی، م.، قربانی، م.، شهریاری، س.، پورکرمانی، م.، حکیمی آسیابر، س.، 1390، تقسیمات تکتونیکی البرز غربی: ویژه‌نامه زمین­شناسی، 81(21)، 113-124.
علیزاده نوقابی، ح.، علیزاده، ع.، شکیبا منش، ع.، 1397، بکارگیری شبکه­های بیزین چند موجودیتی برای مدیریت عدم قطعیت در سطوح بالای تلفیق داده: فصلنامه علمی- پژوهشی فرماندهی و کنترل، 2(2)، 1-12.
محمدی، ص.، مشتاق، ج.، گل پیرا، ه.، 1399، ارائه روش جدید ارزیابی قابلیت اطمینان در شبکه‌های فعال: مجله مهندسی برق دانشگاه تبریز، 50(4)، 1797-1809.
ملکی، ب.، رحیمی، ح.، ملکی، و.، 1398، بهره‌گیری از مدل سرشتی توزیع بزرگا برای گسل شمال تبریز در مطالعات تحلیل خطر و تأثیرات آن در برآورد پارامتر شتاب و منحنی خطر زمین‌لرزه: فیزیک زمین و فضا، 45(3)، 537-552.
موسوی بفروئی، س. ح.، بابایی ماهانی، ع.، 1400، برآورد احتمالاتی خطر زمین‌لرزه برای 8 شهر پرجمعیت ایران: مجله ژئوفیزیک ایران، doi:10.30499/IJG.2022.320133.1386.
موسوی بفروئی، س. ح.، میرزائی، ن.، شعبانی، ا.، اسکندری قادی، م.، 1393، پهنه‌بندی خطر زمین‌لرزه در ایران و برآورد مقادیر بیشینه شتاب برای مراکز استان‌ها: مجله فیزیک زمین و فضا، 40(4) 15-38.
موسوی شوشتری، س. م. ت.، سیدین، س. ع. ر. 1398، ارزیابی تهدید اهداف هوایی با استفاده از مدل احتمالاتی قاعده مبنا: فصلنامه علمی- پژوهشی فرماندهی و کنترل، 3(2)، 1-22.
میرزائی، ن.، قیطانچی، م. ر.، ناصریه، س.، رئیسی، م.، ظریفی، ز.، طبائی، ق.، 1381 ،پارامترهای مبنایی زمینلرزه­های ایران: انتشارات دانش­نگار، 184 ص.
Abrahamson, N. A., 2006, Seismic hazard assessment: problems with current practice and future development: Proceeding of the 1st European Conference on Earthquake Engineering and Seismology (ECEES), Geneva, Switzerland.
Ambraseys, N. N., 1975, Studies in historical seismicity and tectonics Geodynamics today: Royal Society, London, 7-16.
Ambraseys, N. N., 1988, Engineering seismology, Mallet-Milne lecture, Special Issue: Earthquake Engineering & Structural Dynamics, 17, 1-105.
Ambraseys, N. N., 2001, Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and Middle East: Geophysical Journal International, 145, 471-485.
Ambraseys, N. N., and Jackson, J. A., 1998, Faulting associated with historical and recent earthquakes in the Eastern Mediteranean region: Geophysical Journal International, 133, 390-406.
Ambraseys, N. N., and Melville, C. P., 1982, A history of Persian earthquakes: Cambridge university press, London.
Bommer, J. J., 2012, Challenges of building logic trees for probabilistic seismic hazard analysis: Earthquake Spectra, 28, 1723-1735, doi:10.1193/1.4000079.
Boore, D. M., and Atkinson, G. M., 2008, Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s: Earthquake Spectra, 24(1), 99-138.
Bozorgnia, Y., Mahmoud, M., Hachem, M. M., and Campbell, K. W., 2010, Ground motion prediction equation (“attenuation relationship”) for inelastic response spectra: Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering.
Brezger, A., and Lang, S., 2006, Generalized structured additive regression based on Bayesian P-splines: Computational Statistics and Data Analysis, 50(4), 967–991.
Campbell, K. W., 1982, Bayesian analysis of extreme earthquake occurrences Part I Application   to the San Jacinto fault zone of southern California: Bulletin of the Seismological Society of America, 73, 1099–1115.
Campbell, K. W., 1983, Bayesian analysis of extreme earthquake occurrences. Part II. Probabilistic hazard model: Bulletin of the Seismological Society of America, 72, 1689–1705.
Campbell, K. W., and Bozorgnia, Y., 2008, NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s: Earthquake Spectra, 24(1), 139-17.
Degroot, M. H., and Schervish, M. J., 2012, Probability and Statistic, Forth edition: Pearson.
Der kiureghian, A., Sackman, J. L., and Hong, K. J., 1999, Interaction in inter
 
      connected electrical substation equipment subjected to earthquake ground motion: University of California, Berkeley.
Eldin, N. N., and Eldrandly, K. A., 2004, A Bayesian Belief Network analysis of factors influencing wildfire occurrence in Swaziland aided system for site selection of major capital investment: 1st ASCAAD International Conference, e-Design in Architecture, Dhahran, Saudi Arabia.
Eslami, M., Taghizadeh-Farahmand, F., and Afsari, N., 2020, Evaluation of deterministic seismic hazard via fuzzy logic system in Northwest of Iran, Tabriz city: The 19th Iranian Geophysical Conference, 1434-1437.
Frei, R., and Pagan, A., 2011, Sign restrictions in structural vector autoregressions: A Critical Journal of Economic Literature, 49(4), 938-960.
Galanis, O. C., Tsapanos, T. M., Papadopoulos, G. A., and Kiratzi, A. A., 2002, Bayesian extreme values distribution for seismicity parameters assessment in South America: Journal of the Balkan Geophysical Society, 5(3), 77-86.
Gardner, J. K., and Knopoff, L., 1974, Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian: Bulletin of the Seismological Society of America, 64, 1363-1367.
Ghodrati Amiri, G., Mahdavian, A., and Manouchehri Dana, F., 2007, Attenuation relationships for Iran: Journal of Earthquake Engineering, 11(4), 469-492, doi:10.1080/13632460601034049.
Ghodrati-Amiri, G., Rahimi, M. A., Razeghi, H. R., and Razavian Amrei, S. A., 2011, Evaluation of horizontal seismic hazard of Tabriz, Iran: International Journal of Earth Sciences and Engineering, 6, 196-199.
Hamzehloo, H., Alikhanzadeh, A., Rahmani, M., and Ansari, A., 2012, Seismic hazard maps of Iran: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
Inoue, A., and Kilian, L., 2013, Inference on impulse response functions in structural: VARM Journal of Econometrics, 177(1), 1-13.
ISC, 2020, International Seismological Center EHB bulletin Thatcham UK., http://www.isc.ac.uk, accessed October 2020.
Jackson, J., Haines, J. and Holt, W., 1995, The accommodation of Arabia-Eurasia plate convergence in Iran, Journal of Geophysics  Resarche., 100, 15205-15219.
Kassawara, R., and Sandell, L., 2006, Truncation of the lognormal distribution and value of the standard deviation for ground motion models in the Central and Eastern United States, EPRI RP 1013105, Department of Energy, Norman A. Abrahamson, Inc.
Kijko, A., 2011, Introduction to Probabilistic Seismic Hazard Analysis, in Gupta, H., ed., Encyclopedia of Solid Earth Geophysics: Springer.
Kijko, A., Smith, A., and Sellevoll, M. A., 2016, Estimation of earthquake hazard parameters from incomplete data files, Part III, Incorporation of uncertainty of earthquake‐occurrence model: Bulletin of the Seismological Society of America, 106(3), 1210–1222.
Koski, T., and Noble, J. M., 2009, Bayesian Networks: An Introduction, first edition: John Wiley & Sons.
Kowsari M., Halldorsson, B., Hrafnkelsson, B., et al., 2019, Calibration of ground motion models to Icelandic peak ground acceleration data using Bayesian Markov Chain Monte Carlo simulation: Bulletin of Earthquake Engineering, 17, 2841–2870, doi: 10.1007/s10518-019-00569-5.
Kowsari, M., Sonnemann, T., Halldorsson, B., Hrafnkelsson, B., Snæbjörnsson, J., and Jonsson, S., 2020, Bayesian inference of empirical ground motion models to pseudo-spectral accelerations of South Iceland seismic zone earthquakes based on informative priors: Soil Dynamics and Earthquake Engineering, 132, 106075. doi:10.1016/j.soildyn.2020.106075.
Lyubushin, A., and Parvez, I., 2010, Map of seismic hazard of India using Bayesian approach: Natural Hazards, 55, 543–556.
Lyubushin, A., Tsapanos, T. M., Pisarenko, V. F., and Koravos, G. C., 2002, Seismic hazard for selected sites in Greece: a Bayesian estimates of seismic peak ground acceleration: Natural Hazards, 25(1), 83–89.
Mirzaei, N., Gao, M., and Chen, Y. T., 1998, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces: Journal of Earthquake Prediction Research (JEPR), 7, 465-495.
Mohammadi, H., and Bayrak, Y., 2015, An evaluation of earthquake hazard parameters in the Iranian Plateau on the Gumbel III distribution, Journal of Seismology, 20, 615-628.
Mohammadi, H., Türker, T., and Bayrak, Y., 2016, A quantitative appraisal of earthquake hazard parameters evaluated from Bayesian approach for different regions in Iranian Plateau: Pure and Applied Geophysics, 173, 1971-1991.
Mohammadian, M., 2020, Risk-targeted probabilistic seismic hazardnalysis for Siraf Port: Geography and Environmental Hazard, 9(34), 19-24. 
Moinfar, A. A., Naderzadeh, A., and Nabavi, M. H., 2012, New Iranian Seismic Hazard Zoning Map for New Edition of Seismic Code and Its Comparison with Neighbor Countries: 15th WCEE, LISBOA.
Nas, M. A., Lyubushin, A. A., Softa, M. U., and Bayrak, Y. U., 2020, Comparative PGA-driven probabilistic seismic hazard assessment (PSHA) of Turkey with a Bayesian perspective: Journal of Seismology, https://doi.org/10.1007/s10950-020-09940-5.
Ommi, S., Zafarani, H., and Smirnov, V. B., 2016, Bayesian estimation of the Modified Omori Law parameters for the Iranian Plateau: Journal of Seismology, 20, 953-970.
Pisarenko, V. F., and Lyubushin, A. A., 1997, Statistical estimation of maximum peak ground acceleration at a given point of aseismic region: Journal of Seismology, 1(4), 395-405.
Pisarenko, V. F., and Lyubushin, A. A., 1999, Bayesian approach to seismic hazard estimation: maximum values of magnitudes and peak ground accelerations: Earthquake Research in China (English Edition), 13(1), 45–57.
Salahshoor, H., Lyubushin, A., Shabani, E., and Kazemian, J., 2018, Comparison of Bayesion estimates of peak ground acceleration (Amax) with PSHA in Iran: Journal of Seismology, 22(6), 1515-1527.
Silva, V., Crowley, H., Pagani, M., Monelli, D., and Pinho, R., 2013, Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment: Natural Hazards, doi:10.1007/s11069-013-0618-x.
Tavakoli, B., and Ghafory-Ashtiany, M., 1999, Seismic hazard assessment of Iran, Special Issue: Anali Di Geofisica Journal GSHAP, 42, 1013-1021.
Tayebzadeh Moghadam, N., Malekmohammadi, B., and Yavari, A. R., 2017, Comparing the application of Bayesian modeling and multi criteria decision making method in environmental risk assessment of dams (Case study: Taleghan Dam): Journal of Environmental Science and Technology, 19(4), 423-435.
Theodulidis, N., and Papazachos, B., 1992, Dependence of strong ground motion on magnitude, distance, site geology and macroseismic intensity: Soil Dynamics Earthquake Engineering, 11, 387–402.
Tong, X., and Liu, M., 2017, Probabilistic Graphical Models, Spring 2017 Lecture 13: Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes10-708.
Tsapanos, T. M., Galanis, O. C., Koravos, G. C., and Musson. R. M. W., 2002, A method for Bayesian estimation of the probability of local intensity for some cities in Japan: Annals of Geophysics, 45, 657–671.
Tsapanos, T. M., Lyubushin, A. A., and Pisarenko, V. F., 2001, Application of a Bayesian approach for estimation of seismic hazard parameters in some regions of the Circum-Pacific Belt: Pure and Applied Geophysics, 158, 859–875.
Uhlig, H., 2005, What are the effects monetary policy on output results form an identification procedure: Journal Monetary Economics, 52(2), 381-419.
Yadav, R. B. S., Tsapanos, T. M., Bayrak, Y., and Koravos, G. C., 2013a, Probabilistic appraisal of earthquake hazard parameters deduced from a Bayesian approach in the northwest frontier of the Himalayas: Pure and Applied Geophysics, 170(3), 283-297.
Yadav, R. B. S., Tsapanos, T. M., Tripathi, J. N., and Chopra, S., 2013b, An evaluation of tsunami hazard using Bayesian approach in the Indian: Ocean Tectonophysics, 593, 172-182.
Yazdani, A., and Kowsari, M., 2013, Bayesian estimation of seismic hazards in Iran: Scientia Iranica, 20(3), 422-430.
Yazdani, A., and Kowsari, M., 2015, Earthquake ground-motion prediction equations for northern Iran: Natural Hazards, 69(3), 1877-1894.
Watthayu, W., and Peng, Y., 2004, A Bayesian network based framework for multi-criteria decision making: Proceeding of Multi-Criteria Decision Making ConferenceMCDA 2004), Whistler B.C., 6-11.
Woodward, P., 2011, Bayesian Analysis Made Simple: An Excel GUI for WinBUGS:RC Press.