Forecasting of monthly precipitation based on ensemble approach using CFSv2-WRF model over Iran (case study: October 2019 to April 2020)

Document Type : Research Article

Authors

1 Assistant Professor, Water Research Institute (WRI), Tehran, Iran

2 Research Expert, Water Research Institute (WRI), Tehran, Iran

3 Assistant Professor, Department of Energy, Faculty of New Sciences and Technologies, Graduate University of Advanced Technology (GUAT), Kerman, Iran

Abstract

Skill assessment of global weather forecasting systems in different regions and time scales can not only improve the performance of the models based on the use of appropriate parameters for modeling or methods for post-processing, but also increase our understanding about performance of forecasting models in regions and different time scales. Accurate precipitation forecasts can play an important role in water resources management as well as reduce damages caused by heavy rainfall.
    In this study, we assess the use of the Weather Research and Forecasting (WRF) model to downscale NCEP Climate Forecast System Version 2 (CFSv2) atmospheric reanalysis for generating a monthly precipitation forecast over Iran. The WRF model is configured with
two-way nested domains of 60-20 km horizontal resolution. It is used to produce precipitation forecasts based on four different configurations and six initial conditions of CFSv.2 data (totally 24 members) for October-April precipitation over the period 2000-2019 (as hindcast). Performance of ensemble members was evaluated according to the Kling-Gupta-Efficiency (KGE) in comparison with 145 meteorological stations over Iran. Each member has a rating of 1 to 24. The weighted average method was used to calculate the average precipitation obtained from 24 members. To evaluate the performance of WRF-CFSv.2 ensemble model in monthly precipitation forecast, we used some criteria such as False Alarms Rate (FAR), Proportion Correct (PC), and Heidke Skill Score (HSS) for the verification of categorical forecast and Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), Pearson Correlation Coefficient (PCC) and Mean Bias Error (MBE). The results showed that the average values of NSE, RMSE, MBE and PCC of ensemble model for hindcast were 0.46, 365, -5.7 and 0.67, respectively. Categorical indices indicated that the model skill in forecast of each precipitation class (below normal- less than 33rd percentile, normal- between 33rd and 66rd percentiles, above normal- greater than 66rd percentile) has an accuracy of 52%. Evaluation of the efficiency of the model for a test period (October-April precipitation over the period
2019-2020) shows that the model is able to forecast the distribution of monthly precipitation over Iran. In this case study, the results show that the forecasted monthly precipitation has a positive correlation (PCC = 0.68) with the observations. The results suggest that the
WRF-CFSv.2 ensemble forecast based on 24 members can be useful for flood forecasting and water resources management, although the amount of precipitation forecast has bias in some precipitation systems.

Keywords

Main Subjects


دارند، م.، زندکریمی، س.، 1395، ارزیابی دقت داده‌های بارش مرکز اقلیم‌شناسی بارش جهانی بر روی ایران: مجله ژئوفیزیک ایران، 10(3)، 95-113.
دهبان، ح.، ابراهیمی، ک.، عراقی نژاد، ش.، بذرافشان، ج.، 1398، ارزیابی دقت مدل‌های NMME در پیش‌بینی بارش ماهانه (مطالعه موردی: حوضه سفیدرود): هواشناسی کشاورزی، 7(1)، 3-12.
دهبان، ح.، ابراهیمی، ک.، عراقی نژاد، ش.، بذرافشان، ج.، 1399، توسعه سامانه پیش‎بینی چندمدلی بارش ماهانه در حوضه آبریز سفیدرود: تحقیقات آب و خاک ایران، 51(8)، 1881-1893.
رضازاده، م.، مرادیان، ف.، قادر، س.، 1398، بررسی عملکرد سامانه همادی چند‌فیزیکی مدل میان‌مقیاس WRF جهت شبیه‌سازی بارش در مناطق مرکزی ایران: مجله ژئوفیزیک ایران، 14(1)، 13-38.
قاضی میرسعید، س. م.، ذوالجودی، م.، سیفری، ز.، 1392، بررسی صحت و دقت طرح‌واره­های مختلف مدل WRF و ارزیابی پیش­بینی بارش در ایران زمین: فصلنامه تحقیقات جغرافیایی، ۲۸(۲)، ۱۹۴-210.
قصابی، ز.، کمالی، غ.، مشکوتی، ا. ح.، حجام، س.، جواهری، ن.، 1393، ارزیابی عملکرد طرح‌واره‌های پارامترسازی خردفیزیکی و همرفت مدل WRF در برآورد بارش در حوضه آبریز کارون در جنوب غرب ایران: پژوهش‎های اقلیم­شناسی، 19، 1-10.
مرادی، ش.، جوانمرد، س.، قادر، س.، آزادی، م.، قرایلو، م.، 1399، مؤثرترین طرح‌واره در بهبود عملکرد مدل WRF جهت پیش‌بینی بارش در منطقه شمال غرب ایران - مطالعه موردی: هواشناسی و علوم جوّ، 3(3)، 188-200.
نجفی، ح.، مساح بوانی، ع. ر.، ایران نژاد، پ.، رابرتسون، ا.، 1396، کاربست مدل‎های همادی آمریکای شمالی در پیش‎بینی فصلی بارش گستره ایران: تحقیقات منابع آب ایران، 13(4)، 28-38.‎
Agyeman, R. Y. K., Annor, T., Lamptey, B., Quansah, E., Agyekum, J., and Tieku, S. A., 2017, Optimal physics parameterization scheme combination of the weather research and forecasting model for seasonal precipitation simulation over Ghana: Advances in Meteorology, 2017, 1-15.
Alizadeh‐Choobari, O., 2019, Dynamical downscaling of CSIRO‐Mk3.6 seasonal forecasts over Iran with the regional climate model version 4: International Journal of Climatology, 39(7), 3313-3322.
Chen, F., Liu, C., Dudhia, J., and Chen, M., 2014, A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States: Journal of Geophysical Research, 119, 7271–7291.
Darand, M., and Khandu, K., 2020, Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran: Journal of Arid Environments, 178, 104172.
Fallah, A., Rakhshandehroo, G. R., Berg, P. O. S., and Orth, R., 2020, Evaluation of precipitation datasets against local observations in southwestern Iran: International Journal of Climatology, 40(9), 4102-4116.
Grell, G. A., and Freitas, S. R., 2014, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling: Atmospheric Chemistry and Physics, 14, 5233–5250, doi:10.5194/acp145233-2014.Hong, S. Y., Dudhia, J., and Chen, S. H., 2004, A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation: Monthly Weather Review, 132(1), 103-120.
Hong, S. Y., Noh, Y., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes: Monthly Weather Review, 134, 2318–2341.
Infanti, J. M., and Kirtman, B. P., 2014, Southeastern US rainfall prediction in the North American multi-model ensemble: Journal of Hydrometeorology, 15(2), 529-550.
Janjic, I. Z., 1994, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes: Monthly Weather Review, 122, 927–945
Kain, J. S., and Fritsch, J. M., 1993, Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The representation of cumulus convection in numerical models (165-170): American Meteorological Society, Boston, MA.
Kessler, E., 1969, On the distribution and continuity of water substance in atmospheric circulations, in Meteorological Monographs,
 
32: American Meteorological Society.
Kessler, E., 1995, On the continuity and distribution of water substance in atmospheric circulations: Atmospheric Research, 38(1-4), 109-145.
Khan, M. Z. K., Sharma, A., and Mehrotra, R., 2017, Global seasonal precipitation forecasts using improved sea surface temperature predictions: Journal of Geophysical Research-Atmospheres, 122(9), 4773-4785.
King, A. D., Hudson, D., Lim, E. P., Marshall, A. G., Hendon, H. H., Lane, T. P., and Alves, O., 2020, Sub‐seasonal to seasonal prediction of rainfall extremes in Australia: Quarterly Journal of the Royal Meteorological Society, 146(730), 2228-2249.
Kirtman, B. P., Min, D., Infanti, J. M., et al., 2014, The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction: Bulletin of the American Meteorological Society, 95(4), 585-601.
Lin, Y. L., Farley, R. D., and Orville, H. D., 1983, Bulk parameterization of the snow field in a cloud model: Journal of Climate and Applied Meteorology, 22, 1065–1092.
Mariotti, A., Baggett, C., Barnes, E. A., et al., 2020, Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond: Bulletin of the American Meteorological Society, 101(5), E608-E625.
Nakanishi, M., and Niino, H., 2004, An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification: Boundary-Layer Meteorology, 112(1), 1–31.
Nassaj, B. N., Zohrabi, N., Shahbazi, A. N., and Fathian, H., 2022, Evaluating the performance of eight global gridded precipitation datasets across Iran: Dynamics of Atmospheres and Oceans, 98, 101297.
Pennelly, C., Reuter, G., and Flesch, T., 2014, Verification of the WRF model for simulating heavy precipitation in Alberta: Atmospheric Research, 135–136, 172–179.
Rogers, E., Black, T., Ferrier, B., Lin, Y., Parrish, D., and DiMego, G., 2001, Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis: NWS Technical Procedures Bulletin, 488, 15 pp.
Saha, S., Moorthi, S., Wu, X., et al., 2014, The NCEP climate forecast system version 2: Journal of Climate, 27(6), 2185-2208.
Sangelantoni, L., Ricchi, A., Ferretti, R., and Redaelli, G., 2021, Dynamical downscaling in seasonal climate forecasts: Comparison between RegCM-and WRF-based approaches: Atmosphere, 12(6), 757.
Serrano-Notivoli, R., and Tejedor, E., 2021, From rain to data: A review of the creation of monthly and daily station-based gridded precipitation datasets: Wiley Interdisciplinary Reviews: Water, 8(6), e1555.
Singh, J., Yeo, K., Liu, X., Hosseini, R., and Kalagnanam, J. R., 2015, Evaluation of WRF model seasonal forecasts for tropical region of Singapore: Advances in Science and Research, 12(1), 69-72.
Skamarock, W. C., Klemp, J. B., Dudhia, J., et al., 2019, A description of the advanced research WRF model version 4: National Center for Atmospheric Research: Boulder, CO, USA, 145, 145.
Tietdke, M., 1989, A comprehensive mass flux scheme for cumulus parameterization in large-scale models: Monthly Weather Review, 117, 177-1800.
Toth, Z., and Kalnay, E., 1997, Ensemble forecasting at NCEP and the breeding method: Monthly Weather Review, 125, 3297–3319.
Trenary, L., DelSole, T., Tippett, M. K., and Pegion, K., 2018, Monthly ENSO forecast skill and lagged ensemble size: Journal of Advances in Modeling Earth Systems, 10(4),1074-1086.
Vitart, F., 2014, Evolution of ECMWF sub‐seasonal forecast skill scores: Quarterly Journal of the Royal Meteorological Society, 140(683), 1889-1899.
Wanders, N., and Wood, E. F., 2016, Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations: Environmental Research Letters, 11(9), 094007.
Wang, B., Lee, J. Y., Kang, I. S., et al., 2009, Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004): Climate Dynamics, 33(1), 93-117.
Zhao, T., Zhang, Y., and Chen, X., 2019, Predictive performance of NMME seasonal forecasts of global precipitation: A spatial-temporal perspective: Journal of Hydrology, 570, 17-25.