برآورد ساختارهای سرعتی رسوبات سطحی در حوزه تهران با استفاده از پراکنش امواج سطحی لاو

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 ژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

2 مؤسسه ژئوفیزیک، دانشگاه تهران

3 دانشگاه تحصیلات تکمیلی، علوم پایه، زنجان

چکیده

در این تحقیق داده‌های ثبت شده در ده ایستگاه شتاب‌نگاری سازمان پیشگیری و مدیریت بحران شهر تهران، که به مدت 8 ماه به‌طور پیوسته ثبت شده‌اند، مورد بررسی قرار گرفته و نوفه ثبت شده در این مدت برای تعیین تابع‌های گرین تجربی استفاده شد. از طرفی دیگر داده‌‌های ثبت شده از زلزله‌‌های محلی رخ داده در اطراف تهران در ایستگاه‌های نصب شدة شرکت پارسیان برای برآورد منحنی‌‌های پاشش تک‌ایستگاهی استفاده شد. همبستگی متقابل روی مولفة مماسی یک‌ساعته صورت گرفت و منحنی‌های پاشش سرعت گروه مُد اساسی امواج لاو، در بُرد تناوبی 2 تا 5 ثانیه، محاسبه شد. در مرحله بعد، با استفاده از روش وارون‌سازی مدل دوبُعدی و منحنی‌‌های پاشش برآورد شده از روش‌های تک‌ایستگاهی و نوفه، تغییرات جانبی سرعت گروه امواج لاو در تناوب‌‌های پیش‌گفته محاسبه شد. برای رسیدن به این هدف، منطقه تهران به 88 یاخته با ابعاد o1/0×o1/0 تقسیم‌بندی و در هر یاخته مقادیر سرعت گروه امواج لاو در تناوب‌‌های 2 تا 5 ثانیه برآورد شد. با توجه به پوشش پرتوها، کمینه ابعاد ناهمگنی تفکیک‌پذیر در این تحقیق، شش کیلومتر به‌دست آمد. با توجه به نتایج به‌دست آمده، سرعت‌های کم با سنگ‌های کنگلومرا و رسوبات با ضخامت زیاد هماهنگی مناسبی داشت و در مناطق گوناگون، جنس رسوبات با سرعت به‌دست آمده همخوانی خوبی نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of shallow sediment structure of Tehran Basin by using surface wave Love dispersion curves

نویسندگان [English]

  • Ruhollah Amiri Fard 1
  • Habib Rahimi 2
  • Farhad Sobouti 3
چکیده [English]

The delineation of the elastic, or velocity, structures of the Earth has long been a goal of the world's seismologists. In the first few decades of seismological research, the investigation of velocity structures was restricted to the determination of one-dimensional models of the solid Earth and various regions within it. Seismologists are currently working on three-dimensional velocity models, and they are trying to resolve finer and finer features in the Earth. The knowledge of seismic velocity structure of the crust and the upper mantle is important for several reasons: It includes the accurate location of the earthquakes, it is used in the determination of the composition and origin of the outer layers of the Earth, it improves our ability to discriminate nuclear explosions from earthquakes, it helps to interpret the large-scale tectonics as well as a reliable assessment of earthquake hazards. In this study, we used highfrequency dispersion curves to estimate the elastic properties of Tehran and the suburbs. Tehran city is located in the Alborz major seismic tectonic zone. The Alborz is an arcuate chain of mountains in the Northern Iran that wraps around the Southern side of the South Caspian basin; the boundary is roughly the present shoreline of the Caspian Sea. The range is actively deforming on range-parallel thrusts and left lateral strike-slip faults. The thrusts dip inward toward the interior of the range from both its northern and southern sides, and the GPS-derived shortening across the range is 5 ± 2 mm/yr at the longitude of Tehran (Vernant et al., 2004b). Most are parallel to the range and accommodate the present-day oblique convergence across the mountain belt. Recent large earthquakes occurring in this region suggest that the seismicity is connected with major faults of the recent age that cut across the regional Quaternary Lineaments. In this study, in order to estimate the upper crust elastic structure, we conducted a tomographic inversion of the Love wave dispersion to obtain two-dimensional Love wave group velocity tomographic images in a period range from 2 s to 5 s for the city of Tehran and the suburbs. We used two databases to derive dispersion curves for different paths. In the first dataset, continuous ambient noise in ten stations located in and around the city of Tehran and installed by the Tehran Disaster Mitigation and Management Organization network was used to explore the inter-station Green’s Functions. In the second database, forty seven earthquakes recoded by the Parsian stations were prepressed and rotated to be used as single station records to estimate the Love wave group velocity. In the next step, the inter-station Green functions and single-station records were used to estimate the Love wave dispersion curves by applying a multiple filtering technique. All dispersion curves were used to estimate the two-dimensional Love wave group velocity models. For this purpose, Tehran region was divided into 0.1° × 0.1° cells. According to the ray coverage, the minimum dimension of distinct heterogeneity was 6 km. In our study, topographical features and near-surface known geological structures were two main criteria to assess the credibility of the estimated Love wave group velocity variations. There was a strong correlation between the estimated group velocities and topographical features. The prominent surface geology units at the mountain range consisted of varying structures including sand-stone, siltstone, claystone, and massive limestone.

کلیدواژه‌ها [English]

  • Noise
  • surface wave
  • Group velocity
  • cross-correlation
  • Tomography

بربریان، م.، قریشی، م.، ارژنگروش، ب.، مهاجر اشجعی، 1364، پژوهش و بررسی ژرف نوزمین‌ساخت، لرزه‌زمینساخت و خطر زمینلرزه-گسلش در گستره تهران و پیرامون: سازمان زمین-شناسی کشور.

رحیمی، ح.، 1392، برآورد توموگرافی دوبعدی سرعتهای فاز، گروه و ساختار سرعت امواج برشی در پهنه البرز: مجلة ژئوفیزیک ایران: 7(2)، 21-26.

Alavi, M., 1994, Tectonics of the Zagros Orogenic belt of Iran: New data and interpretations: Tectonophysics, 229, 211–238.

Allen, M. B., Ghassemi, M., Sharabi, M. and Qorashi, M. (2003), Accommodation of late Cenozoic oblique shortening in the Alborz Range, northern Iran: J. Structural Geology, 25, 659–672.

Backus, G. E., and Gilbert, F., 1968, The resolving power of gross earth data: Geophys. J. Int., 16, 169-205.

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M. and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements: Geophys. J. Int., 169, 1239–1260.

Ditmar, P. G., and Yanovskya, T. B., 1987, Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities: Phys. Solid Earth, Izvestia Acad. Sci. USSR, 23 (6), 470–477.

Guo, Z., Xing, G., Wang, W., and Yao, Z., 2012, Upper- and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography: Geophys. J. Int. 189, 1169–1182, doi:10.1111/j.1365-246X.2012.05425.x.

Herrmann, R. B., and Ammon, C. J., 2002, Computer Programs in Seismology, An Overview of Synthetic Seismogram Computation: Department of Earth and Atmospheric Sciences, Saint Louis University, St Louis.

Jackson, J., Priestley, K., and Berberian, M., 2002, Active tectonics of the South Caspian Basin: Geophys. J. Int., 148, 214–245.

Mottaghi, A., Rezapour, M., and Tibuleac, L., 2012, Ambient noise Rayleigh wave shallow tomography in the Tehran region, central Alborz, Iran: Seismological Research Letters, 83, 498-504.

Rieben, W. H., 1966, Geological observation on alluvial deposits in northern Iran: Geol. Surv. Iran, 9, 39pp.

Shapiro, N. M., and Campillo, M., 2004, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise: Geophys. Res. Lett. 31, L07614,doi: 10.1029/2004GL019491.

Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., 2005, Extracting time-domain Green’s function estimates from ambient seismic noise: Geophys. Res. Lett. 32, L03310, doi: 10.1029/2004GL021862.

Shapiro, N., Campillo, M., Stehly, L., and Ritzwoller, H., (2005), High-resolution surface-wave tomography from ambient seismic noise: Science, vol 307.

Shirzad, T., and Shomali, Z. H., (2013), Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography: Geophys. J. Int., 196, 1162– 1176, doi:10.1093/gji/ggt449.

Shirzad, T., and Shomali Z. H., (2014), Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography: Phys. Earth Planet. In. 231, 16–29, doi:10.1016/j.pepi.2014.04.001.

Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chery, J., 2004, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophysical J. Int.,157, 381–398.

Yang, Y., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M., 2007, Ambient noise Rayleigh wave tomography across Europe: Geophys. J. Int., 168, 259–274.

Yanovskaya, T. B., 1997, Resolution estimation in the problems of seismic ray tomography: Izvestiya, Physics of the Solid Earth 33(9), 762–765.

Yanovskaya T. B., Maaz R., Ditmar P. G., and Neunhofer H., 1988, A method for joint interpretation of the phase and group surface – wave velocities to estimate lateral variations of the Earth’s structure: Phys. Earth. Plan. Inter., 51, 59-67.

Young, M. K., Rawlinson, N., and Bodin, T., 2013, Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust: Geophysics, 78 (3), WB49–WB62, doi: 10.1190/GEO2012-0356.1.