پیش بینی آماری میانگین ماهانه دمای سطح آب ناحیه شمال غربی اقیانوس هند

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشکده کشاورزی، دانشگاه شیراز

چکیده

پیش‌بینی میانگین ماهانه دمای سطح آب پهنه شمال غربی اقیانوس هند (10 تا 30 درجه شمالی و  45 تا 76 درجه شرقی) انگیزه بنیادین این مطالعه می‌باشد. داده‌های دمای سطح آب این ناحیه برای 81 گره با ابعاد دو درجه طولی در دو درجه عرضی از بانک‌های اطلاعاتی سازمان مدیریت اقیانوسی و جوّی ایلات متحده آمریکا برای دوره زمانی 2007-1997 استخراج شد. با استفاده از روش تحلیل مولفه‌های اصلی، چهار مولفه اصلی اول که در حدود 98 درصد از کل واریانس دمای سطح آب را شرح می‌دهند، استخراج شد. مولفه‌های اصلی اول، دوم، سوم و چهارم به‌ترتیب  79، 9، 9/5 و 4 درصد از کل واریانس دمای سطح آب در پهنه مورد مطالعه را شرح دادند. این چهار مولفه اصلی به‌عنوان چهار ناحیه در منطقه، مورد مطالعه قرار گرفتند. ناحیه‌های اول، دوم و سوم به‌ترتیب در محدوده جغرافیایی 16 تا 24 درجه شمالی و 58 تا 72 درجه شرقی، 10 تا 14 درجه شمالی و  48  تا 76 درجه شرقی، و 14 تا 16 درجه شمالی و  50 تا  74  درجه شرقی قرار گرفت. همچنین ناحیه چهارم شامل خلیج فارس شد. معدل مکانی دمای سطح آب هر ناحیه به عنوان نمایه منطقه‌ای انتخاب شد. مدل‌های خودوایاز-میانگین متحرک تلفیق شده فصلی (Seasonal Auto Regressive Integrated  Moving Average, SARIMA) به‌عنوان مدل‌های تصادفی برای پیش‌بینی سری‌های زمانی نمایه منطقه‌ای الگوهای دمای سطح آب استفاده شد. مجموعه داده دمای سطح آب در مقیاس ماهانه برای سال‌های 2000-1951 و 2007-2001 به‌ترتیب برای ساختن و ارزیابی مدل‌های SARIMA در هر ناحیه به‌کار برده شد. بر پایه معیار اطلاعات آکائیک تصحیح شده و معنی‌دار بودن ضرایب، بهترین مدل‌ خودوایاز-میانگین متحرک تلفیق شده فصلی برای هر ناحیه انتخاب شد. به‌عنوان نمونه، مقدار ضریب همبستگی بین مقادیر مشاهده و پیش‌بینی شده دمای سطح آب ناحیه شمال غرب منطقه مورد با مدل SARIMA (1,1,0)×(1,1,0)12  در دوره آزمون (84 ماه) برابر 94/. بود. همچنین مقدار جذر میانگین توان دوم خطای مربوطه برابر 46/. درجه سلسیوس بود. برای سری‌های زمانی دمای سطح آب در تمامی ناحیه‌ها، ضریب همبستگی بین دمای سطح آب مشاهده و پیش‌بینی شده برای داده‌های آزمون بیشتر از 9/. بود.

کلیدواژه‌ها


عنوان مقاله [English]

Statistical prediction of the monthly mean sea surface temperature over the northwestern of the Indian Ocean

نویسندگان [English]

  • Marzieh Tavakoli
  • Amin Shirvani
  • Mohammad Jafar Nazemosadat
چکیده [English]

The variability of sea surface temperature (SST) is used as a valuable climate index for the prediction of precipitation in far and near areas from the sea. The prediction of SST in the north western of the Indian Ocean is the main goal of this study. This water region including 81 gridpoints with 2˚×2˚ grid in the geographical location of 10-30N and 45-76˚E. The SST was extracted from the National Oceanic and Atmospheric Administration (NOAA) for the period 1951–2007. The principal components analysis technique was used to identify the main patterns of SST and data reduction. The PCA performed was based on the correlation matrix. The number of row and column of the input file for the correlation matrix was, respectively, the number of months and gridpoints. The four principal components that explained 98% of the SST total variance were extracted. The first, second, third and fourth principal components explained 79, 8/9, 5/9 and 4% of the SST total variance, respectively. These four principal components as four regions over the area of interest were studied. The first, second and third regions were geographically located in 16-24˚Nand 58-72˚E, 10-14˚N and 48-76˚E, and 14-16˚N and 50-74˚E. Also, the fourth region was the Persian Gulf. The spatial average of SST within each region was considered as a regional index. As the linear stochastic models, the “seasonal auto-regressive integrated moving average” (SARIMA) models were used to predict the monthly time series of the regional indices of SST patterns. The dataset for the monthly time scale for the 1951–2000 period was used to construct SARIMA models for each region. There is a linear trend in SST time series over three regions which indicate that the monthly SST over these regions is non-stationary. Since ARMA models prefer stationary time series data as their input files, a differencing procedure was considered as a smart approach for transforming these non-stationary series into the stationary ones.  On the basis of the corrected Akaike information criterion (AIC) and significant coefficients, the best seasonal auto-regressive integrated moving average model was separately selected for each region. The auto-correlation function plots of the residuals for the selected models have indicated that the residuals are uncorrelated. The selected model for each region had a minimum value of AIC and its parameters were significantly different from zero. For example, SARIMA(1,1,0)×(1,1,0)12 model was identified for SST time series over the northwestern parts of the study area. As the independent data of training period, the SST time series for the 2001–2007 period was predicted at lead times ranging from one to 12 months and then was evaluated. For example, the value of Pearson correlation between the observed and the predicted SST over the northwestern parts of the study area with SARIMA(1,1,0)×(1,1,0)12 model for the test period (84 months) was 0.94. Also, the corresponding root mean square error was 0.46 degrees Celsius. In all of the regions, the correlation coefficient between the observed and the predicted SST for the independent dataset is higher than 0.9. Therefore, the time series models have a valuable ability in forecasting the monthly time series of SST in each region.

کلیدواژه‌ها [English]

  • sea surface temperature
  • the northwestern of Indian Ocean
  • time series
  • prediction

جهاندیده، م.، و شیروانی، ا.، 1390، پیش­بینی دمای سطح آب خلیج فارس با استفاده از فرایندهای خودوایاز برداری: مجله مهندسی  منابع آب، 4(1)، 53-61.

خلیلی، س،. 1386، تاثیر نوسان­های دمای اقیانوس هند بر بارش ایران: پایان نامه کارشناسی ارشد، دانشگاه شیراز، 80 ص.

رنجبرسعادت آبادی، ع.، و ایزدی، پ.، 1392، ارتباط بی‌هنجاری­های دمای آب سطح اقیانوس هند و دریای عرب با بی­هنجاری­های بارش نیمه جنوبی ایران: مجله فیزیک زمین و فضا، 39(4)، 135-157.

ناظم­السادات، س. م. ج.، و شیروانی، ا.، 1384، پیش­بینی دمای سطح آب خلیج فارس با استفاده از رگرسیون چندگانه و تحلیل مولفه اصلی: مجله علوم و فنون کشاورزی و منابع طبیعی، 3(9)، 1-10.

ناظم­السادات،  س. م. ج.، و شیروانی، ا.، 1385، پیش­بینی بارش مناطق جنوبی ایران با استفاده از دمای سطح آب خلیج فارس و مدل­سازی تحلیل همبستگی متعارف: مجله علمی کشاورزی، 29(9)، 65-77.

ناظم­السادات، س. م. ج.، قائدامینی، ح.، و توکلی، م.، 1393، ارزیابی نشانه­های تغییر اقلیم در پهنه شمال غربی اقیانوس هند: واکاوی روند دمای سطح آب دریا در دوره 1950-2009: مجله ژئوفیزیک ایران، 8(2)، 26-40.

ناظم­السادات، س. م. ج.، و شاهقلیان ک.، 1393، چگونگی پدیداری سامانه­های بارش­زای سنگین در جنوب غربی ایران و پیوند آن با پدیده  MJO : مجله آب و خاک دانشگاه فردوسی مشهد، 28(5)، 1072-1083.

 Box, G. E. P., and Jenkins, G. M., 1976, Time Series Analysis and Forecasting: Holden-Day, San Francisco, CA. Control: Revised edn.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C., 2002, Time series analysis: Forecasting and control. Fourth Edition, John Wiley Publication.

Brockwell R. J., and Davis, R. A., 2002, Introduction to Time Series and Forecasting: New York,  Springer.

Chu, P., and Kats, R. W., 1986, Measures of predictability with applications to the Southern Oscillation: Mon. Wea. Rev., 115(8), 1542–1549.

Emery, W., and Thomson, R. E., 1997, Data Analysis Methods in Physical Oceanography: Pergamon Press.

Lough, J. M., 1997, Regional indices of climate variation: Temperature and rainfall in Queensland Australia: Int. J. Climatology, 17, 55–66.

Landman, W. A., and Mason, S. J., 2001, Forecasts of near-global sea surface temperature using canonical correlation analysis: J. Climate, 14, 3819–3833.

Nazemosadat, S. M. J., and Ghaedamini H., 2010, On the relationships between the Madden Julian Oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis: J. Climate, 23, 887–904.

Nazemosadat, S. M. J., 1996, The Impact of Oceanic–Atmospheric Indices on Rainfall Variability in Iran and Australia: PhD thesis, The University of New South Wales, Sydney. 

Nicholls, N., 1989, Sea surface temperatures and Australian winter rainfall: J. Climate, 2, 956–973.

Preisendorfer, R. M., 1988, Principal Component Analysis in Meteorology and Oceanography: Elsevier Pub., New York.

Shumway R. H., and Stoffer, D. S., 2006, Time Series Analysis and its Applications with R Examples: Springer Science and Business Media, LLC.

Smith, T. M., Reynolds, R.W., Peterson, C. T. C., and Lawrimore, J., 2008, Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006): J. Climate, 21, 2283–2296.