شناسایی مناطق همگن بارشی ایران با استفاده از روش تحلیل مولفه‌های اصلی

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسنده

پژوهشکده حفاظت خاک و آبخیزداری

چکیده

شناسایی مناطق همگن از نظر هم‌وردایی زمانی بارش برای مدیریت بهینه منابع آب و مدیریت ریسک خشکسالی بسیار ضروری است. از این‌رو، به‌منظور شناسایی مناطق همگن بارشی ایران از نظر هم‌وردایی زمانی از داده‌های بارش ماهانه 155 ایستگاه همدیدی پراکنده در سطح کشور در دوره آماری 1990 تا 2014 استفاده شد. با انجام آرایه S تحلیل مولفه‌های اصلی بر روی ماتریس بارش ماهانه ایستگاه‌های مورد استفاده تعداد 5 مولفه اول برای مطالعه بیشتر انتخاب و سپس به روش وریمکس چرخانده شدند تا ساختار فضایی موجود در داده‌ها بهتر هویدا شود. سپس با استفاد از قانون بیشینه بارگویه مولفه‌های انتخابی بر روی ایستگاه‌های مورد مطالعه، پنج منطقه همگن بارشی خزری، منطقه بارشی شمال‌غربی، منطقه بارشی غربی، منطقه بارشی مرکزی-شرقی و منطقه بارشی مرکزی-شمال‌شرقی برای ایران شناسایی شد. منطقه بارشی خزری با بیشینه پاییزه و توزیع تقریباً مناسب بارش در طی سال کرانه‌های دریای خزر و دامنه‌های شمالی البرز را دربرمی‌گیرد. منطقه بارشی شمال‌غربی نیز با بیشینه بارش در بهار استان‌های اردبیل، آذربایجان شرقی- غربی و زنجان را شامل می‌شود. منطقه بارشی غربی نیز با بیشینه بارش در ژانویه منطقه کوهستانی البرز و زاگرس و جلگه خوزستان در جنوب‌غرب کشور را دربرمی‌گیرد. بخش بسیار بزرگی از ایران در مرکز، جنوب و شرق کشور نیز در منطقه بارشی مرکزی-شرقی قرار می‌گیرد که بیشینه بارش خود را در ژانویه دریافت می‌کند. پنجمین منطقه بارشی کشور نیز دشت کویر و شمال‌شرق کشور را شامل می‌شود که بیشینه بارش خود را در ماه مارس دریافت می‌کند. مناطق بارشی شناسایی شده در این پژوهش به‌خوبی از روند مکانی ناهمواری‌های ایران پیروی می‌کنند و با واقعیت‌های جغرافیایی مناطق مختلف کشور هماهنگ هستند. نتایج به‌دست آمده می‌تواند مدیران منطقه‌ای منابع آب کشور را در مدیریت هرچه بهینه‌تر منابع آب در کشور یاری کند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Identification of homogeneous precipitation sub-regions for Iran using principal component analysis

نویسنده [English]

  • Tayeb Raziei
چکیده [English]

Delineation of homogeneous precipitation sub-regions featured with different time variabilities is very important for large countries such as Iran, which are characterized by complex topography and different climates. Very rare efforts have been devoted to identify modes of monthly precipitation variability in Iran and delineating sub-regions having different temporal variabilities of precipitation. On the other hand, most studies of precipitation regionalization in Iran have used very limited and unevenly scattered stations across the country; thus making it necessary to identify the most realistic precipitation sub-regions for Iran using almost all available stations. As such, 155 synoptic stations with relatively regular distribution over Iran, mostly having full data records for the 25 years common period of 1990–2014, were used for identifying an updated precipitation regionalization of the country. The cubic root transformed monthly precipitation of the considered stations were used as input for an S-mode principal component analysis (PCA) applied to the inter-stations correlation matrix (300×155) that is composed of 155 stations and 300 cubic root transformed monthly precipitation. The computed Kaiser–Meyer–Olkin measure of sampling adequacy for the considered matrix with a value of 0.98 indicates that the considered matrix is marvelous for a PCA application. The first five leading significant PCs accounting for approximately 80% of total variance of the dataset were considered for further analysis based on the Scree plot and the sampling errors of the PCs (North et al., 1982). To better characterize the underlying spatial structure of the considered data matrix, the retained PCs were then rotated using varimax orthogonal criteria. The five leading varimax rotated loadings were mapped to present spatial modes of monthly precipitation variability across the country and precipitation sub-regions borders were delineated using the maximum loading value approach (Comrie and Glenn, 1998; Miller and Goodrich, 2007; Chen et al., 2009).
The maps of varimax rotated loadings well represent areas characterized by different modes of precipitation variability and regimes. The five precipitation sub-regions identified using maximum loading values of the varimax rotated components are the Caspian Sea region, the northwestern, the western, the central-eastern, and the central-northeastern of the country. The Caspian Sea region featured with maximum precipitation in autumn and relatively regular distribution of precipitation throughout the year includes the coastal areas of the Caspian Sea and the northern faces of the Alborz Mountain in northern Iran. The north-western sub-region is distinguished from the rest of the country for its identical precipitation regime characterized by maximum precipitation in spring and relatively uniform precipitation all over the year. The three remained precipitation sub-regions of Iran are characterized with a much shorter rainy season, which maximizes in the winter time. The western sub-region encompasses mountainous areas of western Iran as well as the lowlands of the southwestern country. The central-eastern sub-region differs from the western sub-region due to its shorter rainy season and much lower precipitation values in all of the months, but similarly, its maximum precipitation occurs in January. Finally, the central-northeastern precipitation sub-region receives its maximum precipitation in March as opposed to the two aforementioned sub-regions which peak in January. The independence of the identified precipitation sub-regions was examined by applying the Kolmogorov–Smirnov non-parametric test to the regional anomalies of annual precipitation series; the result proved that all the sub-regions are statistically different at 99% confidence level. The identified precipitation sub-regions can serve as a tool for a better water resources management in the country.
 
 

کلیدواژه‌ها [English]

  • precipitation homogeneous sub-regions
  • S-mode principal component analysis
  • modes of variability
  • Iran
جهانبخش‌اصل، س.، و ذوالفقاری، ح.، 1381، بررسی الگوهای همدیدی بارش‌های روزانه در غرب ایران: فصلنامه تحقیقات جغرافیایی، شماره پیاپی 63 و 64، 234-258.
خلیلی، ع.، حجام، س.، و ایران‌نژاد، پ.، 1370، تقسیمات آب و هوایی ایران: انتشارات وزارت نیرو، طرح جامع آب کشور (جاماب)، 259 صفحه و یک نقشه با مقیاس یک میلیونیم.
ذوالفقاری ، ح.، و ساری‌صراف، ب.، 1378، بررسی بارش‌های شمال غرب ایران با تاکید بر تحلیل خوشه ای: مجله آب و توسعه، 7 (3-2)، 134-142.
رضیئی، ط. و فتاحی، ا.، 1390، ارزیابی کاربرد داده های بارش NCEP/NCAR در پایش خشکسالی ایران: فیزیک زمین و فضا، 37(2)، 225-247.
عدل، ا. ح.، 1339، آب و هوای ایران: انتشارات دانشگاه تهران.
گنجی، م.ح.، 1353، 32 مقاله جغرافیایی: موسسه جغرافیایی و کارتوگرافی سحاب، تهران، 101-139.
مسعودیان، س. ا.، و عطایی، ه.، 1384، شناسایی فصول بارشی ایران به روش تحلیل خوشه‌ای: مجله پژوهشی دانشگاه اصفهان (علوم انسانی)، 8 (1)، 1-12.
Ahmed, S. M., Hussain, M., and Abderrahman, W., 2005, Using multivariate factor analysis to assess surface/logged water quality and source of contamination at a large irrigation project at Al-Fadhli, eastern province, Saudi Arabia: Bull. Eng. Geol. Environ., 64, 319–327.
Chen, L. J, Chen, D. L., Wang, H. J., Yan, J. H., 2009, Regionalization of precipitation regimes in China: Atmospheric and Oceanic Science Letters, 2(5), 301−307.
Comrie, A. C., and Glenn, E. C., 1998, Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability: Clim. Res., 10, 201−215.
De Martonne, E., 1926, Aréisme et indice artidite: Comptes Rendus de L’Acad Sci, Paris, 182, 1395–1398.
DeGaetano, A. T., 1996, Delineation of mesoscale climate zones in the northeastern United States using novel approach to cluster analysis: J. Climate, 9, 1765−1782.
Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh, S., and Mirnia, M., 2004, Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods: J. Hydrology, 297, 109–123.
Domroes, M., Kaviani, M., and Schaefer, D., 1998, An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods: Theor. Appl. Climatol., 61, 151−159.
Ehrendorfer, M., 1987, A regionalisation of Austria’s precipitation climate using principal component analysis: Int. J. Climatol., 7, 71–89.
Fernández Mills, G., 1995, Principal Component Analysis of precipitation and rainfall regionalization in Spain: Theor. Appl. Climatol., 50(3), 169−183.
Fovel, R. G., and Fovel, M. C., 1993, Climate zones of coterminous United States defined using cluster analysis: J. Climate, 6, 2103−2135.
Green, M. C., Flocchini, G., and Myrup, L. O., 1993, Use of temporal principal components analysis to determine seasonal periods: J. Appl. Meteorol., 32(5), 986−995.
Janowalk, J. E., 1988, An investigation of interannual rainfall variability in Africa: J. Climate, 1, 240−255.
Kansakar, S. R., Hannah, D. M., Gerrard, A. J., and Rees, G., 2004, Spatial pattern in the precipitation regime of Nepal: Int. J. Climatol., 24, 1645–1659.
Köppen, W., 1936, Das geographische system der climate: in: Köppen, W., and Geiger, R., (eds) Handbuch der Klimatologie, Gebrüder Borntraeger, Berlin, 1−44.
Lolis, C. J., Bartzokas, A., Metaxas, D. A., 1999, Spatial covariability of the climatic parameters in the Greek area: Int. J. Climatol., 19, 185−196.
Miller, J. A., Goodrich, G. B., 2007, Regionalization and trends in winter precipitation in the northwestern USA: Climate Res., 33, 215−227.
Modarres, R., 2006, Regional precipitation climates of Iran: J. Hydrology (NZ), 45(1), 15−29.
Modarres, R., and Sarhadi, A., 2011, Statistically-based regionalization of rainfall climates of Iran: Global and Planetary Change, 75, 67–75.
North, G. R., Bell, T. L., and Cahalan, R. F., 1982, Sampling errors in the estimation of empirical orthogonal functions: Mon. Wea. Rev., 110, 699–706.
Raziei, T., Bordi I., and Pereira, L.S., 2008, A precipitation-based regionalization for Western Iran and regional drought variability: Hydrol. Earth Syst. Sci., 12, 1309–1321.
Raziei, T., Bordi, I., and Pereira, L. S., 2011, An application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran: Water Resour. Manage., 25, 1075–1086.
Raziei, T., Bordi, I., and Pereira, L. S., 2013, Regional drought modes in Iran using the SPI: The effect of time scale and spatial resolution: Water Resour. Manage., 27, 1661–1674.
Raziei, T., Mofidi, A., Santos, J. A., and Bordi, I., 2012, Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation: Int. J. Climatol., 32, 1226–1237.
Reghunath, R., Sreedhara Murthy, T. R., and Raghavan, B. R., 2002, The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India: Water Research, 36, 2437−2442.
Richman, M. B., 1981, Obliquely rotated principal components: An improved meteorological map typing technique: J. Appl. Meteo., 20, 1145−1159.
Richman, M. B., 1986, Rotation of principal components, J. Climatol., 6, 293−335.
Saris, F., Hannah, D. M., and Eastwood, W. J., 2010, Spatial variability of precipitation regimes over Turkey: Hydrological Sci. J., 55(2), 234−249.
Shen, S. S. P., Wied, O., Weithmann, A., Regele, T., Bailey, B. A., and Lawrimore, J. H., 2015, Six temperature and precipitation regimes of the contiguous United States between 1895 and 2010: A statistical inference study: Theor. Appl. Climatol., DOI: 10.1007/s00704-015-1502-2.
Sheskin, D., 2007, Handbook of Parametric and Nonparametric Statistical Procedures: Chapman & Hall/CRC, 1736 pp.
Singh, K. K., and Singh, S. K., 1996, Space-time variation and regionalization of seasonal and monthly summer monsoon rainfall of the sub-Himalayan region and Gangetic plains of India: Clim. Res., 6, 251−262.
Thornthwaite, C. W., 1948, An approach toward a rational classification of climate: Geographical Review, 38(1), 55–94.
Todhunter, P. E., Mearns, L. O., Terjung, W. H., Hayes, J. T., and Ji, H. Y., 1989, Effects of monsoonal fluctuations on grains in China. Part I: Climatic conditions for 1961–1975: J. Climate, 2, 5−17.
Unal, Y., Kindap, T., and Karaca, M., 2003, Redefining the climate zones of Turkey using cluster analysis: Int. J. Climatol., 23(9), 1045–1055.
Wang, W., Chen, X., Shi, P., and van Gelder, P. H. A. J. M., 2008, Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China: Hydrol. Earth Syst. Sci., 12, 207–221.
Yarnal, B., 1993, Synoptic Climatology in Environmental Analysis: A Primer: Belhaven Press, London, UK.