انتخاب ویژگی و پیش‌بینی باد گاستی با شبکه عصبی پرسپترون چند‌لایه‌ای در ایستگاه خودکار فرودگاهی

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسنده

استادیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

در این مقاله ابتدا با بررسی هوای حاضر گزارش‌های متار، بازه زمانی بیشترین وقوع ناپایداری ایجادکننده باد گاستی (جستی) شناسایی شد. سپس با استانداردسازی داده‌ها به بازه 1/0 تا 9/0، ویژگی‌های مرتبط با جهت و سرعت باد جستی انتخاب شد. روش‌های انتخاب ویژگی در این پژوهش، اطلاعات متقابل و جستجوی پی‌درپی پیشرو شناور با الگوریتم طبقه‌بندی k نزدیک‌ترین همسایگان هستند. ویژگی‌های انتخابی برای پیش‌بینی سرعت باد با روش اول، متغیرهای سرعت باد لحظه‌ای شامل کمینه، میانگین و بیشینه سرعت باد در دو دقیقه و میانگین و بیشینه سرعت باد در ده دقیقه در همان باند هستند. ویژگی‌های انتخابی برای جهت باد با روش اول، متغیرهای جهت باد لحظه‌ای یعنی کمینه، میانگین و بیشینه جهت باد در دو دقیقه و کمینه، میانگین و بیشینه جهت باد در ده دقیقه در همان باند هستند. ویژگی‌های انتخابی با روش دوم برای سرعت باد شامل انحراف جهت باد در ده دقیقه گذشته در باند میانی و فشار لحظه‌ای در هر سه باند است. انحراف جهت باد در ده دقیقه گذشته در باند 11، در باندهای 29 و میانی مشترک هستند. ویژگی چهارم در باندهای 29 و میانی، متغیر بیشینه سرعت باد در ده دقیقه مربوط به همان باند است. در باند 11 علاوه‌بر ویژگی‌های مشترک، متغیرهای بیشینه سرعت باد در ده دقیقه در باند 11 و انحراف جهت باد در ده دقیقه گذشته در باند 29 دیده می‌شود. ویژگی‌های انتخابی برای جهت باد از تنوع بیشتری برخوردار هستند.
در مرحله نهایی، ویژگی‌های انتخابی به شبکه عصبی پرسپترون چندلایه در حالت‌های مختلف داده شد. نتایج خروجی مدل برای پیش‌بینی جهت و سرعت باد جستی مقایسه و بهترین مدل برای پیش‌بینی سرعت باد جستی، شبکه با همبندی 1-2-4-4، نرخ یادگیری 1/0 و آستانه آغازین 5/0 برای وزن هر نرون انتخاب شد. برای جهت باد، شبکه با همبندی 1-3-6-6، نرخ یادگیری 1/0 و آستانه آغازین 5/0 مناسب است. عملکرد شبکه عصبی پرسپترون چندلایه‌ای در پیش‌بینی سرعت باد بهتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Feature selection and prediction of Gusty wind with multilayer perceptron neural network (MLP) at the airport auto station

نویسنده [English]

  • Farideh Habibi
Assistant Professor, Space Physics Department, Institute of Geophysics, University of Tehran
چکیده [English]

In this paper, in the first step, the present weather of METAR reports of the year 2013 in Mehrabad synoptic station was studied and the period with most occurrences of the instability producing the Gusty wind was identified. This period is from January to June of every year. Then, all data of selected period, except the data of Gusty wind direction and speed, were normalized to interval 0.1–0.9. The considered data for training, testing and validation were 60%, 20% and 20%, respectively. The related features of Gusty wind direction and speed were selected from 58 features recorded by 3 sensors located on the runway. The Mehrabad runway direction is from the east to the west with 4000 meters long and 45 meters wide. The sensor No. 29 was on the east end of band, the sensor No. 11 was on the west edge of the band, and location of the mid sensor was on the middle of band which its distance from the band is 600 meters to the north direction.
    The feature selection methods in this study are mutual information (MI) with the Maximum-Relevance Minimum-Redundancy criterion (filter type) and Sequential Floating Forward Selection (SFFS) (wrapper type) with the k Nearest Neighbors (kNN) algorithm. Selected features for Gusty wind speed at each band are the maximum and mean wind speed in 2 and 10 minutes, and the momentary wind speed by the MI method. The selected feature by SFFS method is the wind direction deviation in past 10 minutes on band No. 11 and mid band, momentary pressure on mid band and maximum wind speed in 10 minutes on band No. 29. For Gusty wind direction by first method, the selected features are minimum, mean and maximum wind direction in 2 minutes, minimum and mean wind direction in 10 minutes and momentary wind direction on band No. 29. Selected features with second method are the wind direction deviations in past 10 minutes on the band No. 29 and mid band, and the mean sea level pressure and mean wind direction in 10 minutes on band No. 29.
    In the final step, these selected features were used as inputs of the multilayer perceptron neural network in different modes such as: layer number, neuron number, learning rate and threshold value for weight of neuron. The model output results were compared to predict the Gusty wind direction and speed and the best model was selected. The results show that to predict the wind speed, the best model is a multilayer perceptron neural network with four layers: input layer with 4 neurons, two hidden layers with 4 neurons in the first layer and 2 neurons in the second layer and 1 neuron in the output layer; learning rate of 0.1 and initial weight neurons of 0.5. For predicting the wind direction, the best model has four layers, 6 neurons in the first and second layers and 3 neurons at the third layer and one neuron at the fourth layer with the same learning rate and initial threshold. The MLP performance is better in predicting the Gusty wind speed.

کلیدواژه‌ها [English]

  • Gusty wind
  • Feature selection
  • Mutual Information
  • Sequential Floating Forward Selection
  • multilayer perceptron neural network
  • the airport auto station

اشرفی، خ.، هشیاری­پور، غ. ع.، نجار اعرابی، ب.، کشاورزی شیرازی، ه.، 1388، پیش­بینی روزانه غلظت کربن­منو‌اکسید با استفاده از مدل تلفیقی انتخاب پیشرو عصبی فازی بر­اساس تحلیل پایداری جو: مجله فیزیک زمین و فضا، 38(2)، 183-201.

حبیبی ف.، مزرعه فراهانی، م.، مشیری، ب.، نوحه­گر، ا.، کلهر، ا.، 1390، اصلاح پیش­بینی فرایند طوفان حاره‌ای با انتخاب ویژگی­های مؤثر: مجله ژئوفیزیک ایران، 5(3)، 67-82.

روحی، ا. ر.، نظام­آبادی­پور، ح.، 1396، یک روش انتخاب ویژگی ترکیبی برای داده­های با بعد بالا مبتنی بر خرد جمعی: نشریه مهندسی برق و مهندسی کامپیوتر ایران، ب- مهندسی کامپیوتر، سال 15(شماره 4)، 294-283.

عرب عامری، م.، حبیبی، ف.، کلهر، ا.، 1393، پیش­بینی سرعت باد با استفاده از شبکه عصبی پرسپترون چندلایه در فرودگاه مهرآباد: مجموعه مقالات شانزدهمین کنفرانس ژئوفیزیک ایران، 117-122.

قوامی، ز.، عارفی، ح.، بیگدلی، ب.، جانعلی­پور، م.، 1396، بررسی جامع بر روی روش­های طبقه­بندی غیرپارامتریک به­منظور تفکیک عوارض شهری با استفاده از تلفیق داده­های لایدار و تصویر هوایی با توان تفکیک مکانی بسیار بالا: نشریه مهندسی فناوری اطلاعات مکانی، 5(3)، 97-77.

شعبانی،ر.، 1393، مروری بر الگوریتم­های تکاملی برای حل مسئله انتخاب ویژگی: سومین کنفرانس ملی ایده‌های نو در مهندسی برق، 6 و 7 دی ماه 1393، دانشگاه آزاد واحد اصفهان (خوراسگان)، 749-741.

انتظاری، ع. ر.، حدادنیا، ج.، جعفرزاده، م.، کوروندی، ا.، 1390، ارائه یک شبکه عصبی MLP به­منظور پیش‌بینی یخبندان در استان کرمانشاه: مطالعات جغرافیایی مناطق خشک، 1(3)، 59-71.

مقصودی، م.، قزوینی، م.، 1397، کاربرد الگوریتم­های فرا ابتکاری در کاهش ابعاد و انتخاب ویژگی: سومین کنفرانس بین­المللی ترکیبات، رمزنگاری و محاسبات، دانشگاه علم و صنعت ایران، http://i4c.iust.ac.ir

Chandra Blessie, E., and Karthikeyan, E., 2012, Sigmis: A feature selection algorithm using correlation based method: Journal of Algorithms and Computational Technology, 6(3), 385-394.

Chandrashekar, G., and Ferat, S., 2014, A survey on feature selection methods: Computers and Electrical Engineering, 40, 16-28.

Erdil, A., and Arcaklioglu, E., 2013, The prediction of meteorological variables using artificial neural network: Neural Computing and Applications, 22(7–8), 1677–1683.

Guyon, I. and Elisseeff A., An introduction to variable and feature selection, Journal of Machine Learning Research, 2003, (3), 1157–1182.

Han Jiawei, ‏J. P., ‏and Kamber, M., 2012, Data Mining: Concepts and Techniques, 3rd edition: Morgan Kaufmann Publishers, ISBN 978-0-12-381479-1.

Jianyu, M., and Niu, L., 2016, A Survey on Feature Selection: Procedia Computer Science, 91, 919–926.

Keller, J. M., Liu, D., Fogel, D. B., 2016, Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems and Evolutionary Computation, Wiley, 2016, 1-366

Kohavi, R., and John, G. H., 1997, Wrappers for feature subset selection: Artificial Intelligence, 97(1-2), 273–324.

Luca, M., Orione, F., Taormina, R., and Pasero, E., 2010, A feature selection method for air quality forecasting: ICANN (3), 489-494.

Lutu, P., and Engelbrecht, A. P., 2010, A decision rule-based method for feature selection in predictive data mining: Expert Systems with Applications, 37(1), 602-609.

Pohjalainena, J., Räsänena, O., and Kadiogluba, S., 2015, Feature selection methods and their combinations in high dimensional classification of speaker likability, intelligibility and personality traits: Computer, Speech and Language, 29(1), 145–171.

 

Theodoridis, S., and Koutroumbas, K., 2003, Pattern Recognition, 2nd ed.: Academic Press.

     Vergara, J. R., and Pablo, E., 2014, A review of feature selection methods based on mutual information: Neural Computing and Applications, 24(1), 175–186, DOI 10.1007/s00521-013-1368-0.