Interpretation of potential field anomalies to investigate geological structures and oilfield exploration: A local study in the south Semnan

Document Type : Research Article

Authors

1 Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran

2 College of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran

3 Researcher in geology and geophysics, Department of geophysics,Geological Survey of Norway, Trondheim, Norway

Abstract

South of Semnan province is an important region in Iran for the formation of oil traps, which has been received much attention for several decades. Many sulfur mines have also been discovered in this area. The sulfur is most probably derived from natural gases that are guided by regional faults. Numerous anticlines and salt domes are also present in this area, playing an important role in the formation of oil traps. As a consequence, this region seems to have a great potential to form hydrocarbon traps. Since the area is covered by Tertiary, Quaternary to current sediments, gravity, and magnetic studies are very useful to investigate and explore the geological structures in this region.
Gravity and magnetic studies, in a trapezium grid, were performed to investigate the underground structures, sediment thicknesses, plutonic and volcanic igneous rocks and also hydrocarbon traps. Data acquisition was carried out on 86 profiles with a northwest-southeast trend. The distance between profiles and acquisition stations were selected to be 1000 meter. Due to the presence of swamps, mountainous areas, river, terrain, etc., some stations were removed from the survey plan. In addition, some transects measured in a direction deviating from the straight line. As a result, in some of the profiles, a number of missing stations can be observed. In some of the transects, profiling was not conducted in a regular 1000 m line spacing too. The average magnetic inclination and declination are 53.8 and 4.2 degrees, respectively, and the average total magnetic field is estimated 48181 nT as well. The gravity and magnetic data were collected simultaneously.
In this study, to interpret and discern potential field anomalies, we applied geophysical filters such as surface trend, the tilt angle, and upward continuation. After producing a geophysical map for each method, the results were jointly interpreted. Joint interpretation demonstrated that eight anticlines, five synclines, several faults and salt domes could be recognized. Among these anticlines, anticline B has a considerable depth and dimension so that with 3000 m upward continuation, the gravity field can still be seen. Meanwhile, no igneous rocks were observed on the magnetic maps. Therefore, this anticline can be considered as an appropriate trap for the accumulation of hydrocarbon. These maps confirm the joining fault to the south of Kohe- Sorkh anticline with the fault to the south of Siah-Koh anticline, which are located in the south of Abulabad.
The results show that the potential methods appear to be promising to characterize subsurface structures for the initial phase of hydrocarbon explorations. These maps also show that the Siah-Kuh is a continuation of Kuh-Sorkh, which are separated by regional fault activities, erosion, and new sedimentation. Consequently, it is suggested to use numerical modeling to define the shape, dimension and depth of anomalies, especially for the interpreted anticline B. Finally, a seismic survey can be performed over the potential anomalies that might have hydrocarbon accumulation.

Keywords


آرین، م.، 1388، دیاپیریسم و تکتونیک نمک: انتشارات آثار نفیس، مرکز پژوهشی زمین‌شناسی فرا زمین، 313 ص.
آرین، م.، 1390، مفهوم زمین‌شناختی مرز البرز- ایران مرکزی در گستره­ی تهران تا سمنان و دیاپیریسم نمک در طول آن: مجله نمک، دانشگاه آزاد اسلامی واحد گرمسار، 1-13.
آرین، م.، و فیضی، ف.، 1389، نقش گسلش در گسترش سطحی نهشته­های تبخیری محدوده ورامین-سمنان: فصلنامه علمی پژوهشی زمین و منابع واحد لاهیجان، 1-20.
آرین، م.، و ملکی، ز.، 1386، بررسی دیاپیریسم نمک در محدوده گرمسار-لاسجرد و مکانیسم تشکیل گنبدهای ترکیبی نمک جنوب سمنان (کویر نمک): مجموعه مقالات یازدهمین همایش انجمن زمین‌شناسی ایران، دانشگاه مشهد، 519 ص.
آزاد، م.، 1394، کاربرد فیلتر گسترش رو به بالا در تفسیر داده‌های میدان مغناطیس به‌همراه تعیین ارتفاع بهینه گسترش رو به بالا، منطقه منصورآباد یزد، ایران: مجله فیزیک زمین و فضا، 41(2)، 229-238.
آقانباتى، ع.، 1383، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنى کشور، 586 ص.
انصاری، ع.، مجتهدزاده، ح.، و علمدار، ک.، 1392، روش گرانی و مغناطیس در ژئوفیزیک اکتشافی: انتشارات دانشگاه یزد، 522 ص.
بربریان، م.، قرشی، م.، ارژنگ روش، ب.، مهاجر اشجعی، ا.، 1364، پژوهش و بررسی ژرف نو زمین‌ساخت، لرزه‌زمین‌ساخت و خطر زمین لرزه-گسلش در گستره تهران و پیرامون: سازمان زمین‌شناسی کشور، گزارش شماره 56، 315 ص، 33 - 54.
درویش­زاده، ع.، 1370، زمین­شناسی ایران: نشر دانش امروز، 902 ص.
رضایی، خ.، نظام وفا، ن.، نوروزی، ن.، و نظام وفا، س.، 1391، بررسی پتانسیل سازندها در ترشیری ایران مرکزی برای احداث مخازن زیرزمینی گاز طبیعی، زمین‌شناسی ژئوتکنیک (زمین‌شناسی کاربردی): دانشگاه آزاد اسلامی، 35-50.
علوی، ف.، 1382، مطالعات ذخیره‌سازی زیرزمینی گاز طبیعی درون گنبدهای نمکی سمنان-ایوانکی: پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، تهران، 143 ص.
فاتحی، م.، نوروزی، غ.، و عابدی، م.، 1392، کاربرد فیلترهای فازی محلی تعمیم‌یافته در برآورد مرز بی­هنجاری­های مغناطیسی، بررسی موردی: کانسار آهن تیغه نوآب (بیرجند): مجله فیزیک زمین و فضا، 39(3)، 207-219.
مریدی، ع.، 1369، بررسی دیاپیریسم گنبد نمکی جنوب سمنان (حاشیه شمال کویر ایران مرکزی): پایان‌نامه کارشناسی ارشد، دانشگاه تربیت‌معلم تهران، تهران، 127 ص.
نقشه زمین­شناسی 1:250000 سمنان و کوه گوگرد: سازمان زمین­شناسی و اکتشافات معدنی کشور.
وزیری، ح.، و مجیدی فرد، م.، 1389، جایگاه چینه‌شناسی نهشته­های نمک منطقه گرمسار، ایران مرکزی: فصلنامه تخصصی نمک، دانشگاه آزاد اسلامی واحد گرمسار، 27-17.
Abaie, I., Ansari, H. J., Badakhshan, A., and Jaafari, A., 1964, History and development of the Alborz and Sarajeh fields of Central Iran: Bulletin of Iranian Petroleum Institute, 15, 561-574.
Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobashy, M. M. and El-Araby, H. M., 1989, Gravity interpretation using correlation factors between successive least-squares residual anomalies: Geophysics, 54, 1614-1621.
Arisoy, M., and Dikmen, U., 2013, Edge detection of magnetic sources using enhanced total horizontal derivative of the Tilt angle: Bull Earth Sci Appl Res Cent Hacet Univ, 34, 73-82.
Baranov, V., and Naudy, H., 1964, Numerical calculation of the formula of reduction to the magnetic pole: Geophysics, 29(1), 67-79.
Baranov, V., 1957, A new method for interpretation of aeromagnetic maps: pseudo gravimetric anomalies: Geophysics, 22(2), 359-382.
Bergron, C. J., Morris, T. L. and Ioup, J. W., 1990, Upward and Downward continuation of Airborne Electromagnetic data: SEG 60th Annual International Meeting, 696-699.
Bhattacharyya, B. K. and Chan, K. C., 1977, Reduction of gravity and magnetic data on an arbitrary surface acquired in a region of high topographic relief: Geophysics, 42, 1411- 1430.
Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
Claerbout, J. F., 1988, Fundamentals of geophysical data processing with applications to petroleum prospecting: Blackwell Scientific Publications.
Cooper, G. R. J., and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase: Computers and Geosciences, 32(10), 1585-1591.
Dobrin, M. B. and Savit, C. H., 1988, Introduction to Geophysical Prospecting: McGraw Hill Book Company, 867 p.
Fedi, M., Rapollam, A. and Russo, G., 1999, Upward continuation of scattered potential field data. Geophysics, 64, 443- 451.
Frei, E. and Mostofi, B., 1959, The Main Sedimentary Basins of Iran and Their Oil Prospects. 5th World Petroleum Congress: World Petroleum Congress.
Gansser, A., 1955, New aspects of the geology in central Iran. PBOC: 4th world petrol. Conor – Rome, Section I/A/5, paper 2, 280-300.
Gupta, V. K. and Ramani, N., 1980, Some aspects of regional-residual separation of gravity anomalies in a Precambrian: Geophysics, 45, 1412-1426.
Jacobsen, B. H., 1987, A case for upward continuation as a standard separation filter for potential-field maps: Geophysics, 52, 1138-1148.
Kellogg, O. D., 1953, Foundations of Potential Theory, Dover Publishing Inc.
Miller, H. G. and Singh, V., 1994, Potential field tilt—a new concept for location of potential field sources: Journal of Applied Geophysics, 32, 213-217.
Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W. C., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, Historical development of gravity method in exploration: Geophysics, 70, 63-89.
Robinson, E. and Coruh, C., 1988, Basic Exploration Geophysics, John Wiley and Sons, 562.
Zeng, H., Xu, D. and Tan, T., 2007, A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China: Journal of Geophysics, 72, 145-150.