بررسی الگوهای همدیدی بارش‌های فرین در جنوب غرب ایران در دوره گرم سال

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 استاد، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 استادیار مؤسسه ژئوفیزیک دانشگاه تهران

چکیده

بخش عمده‌ای از کشاورزی ایران در جنوب غرب کشور در دشت­های خوزستان، بوشهر و ارتفاعات یاسوج متمرکز شده است. بارش در فصل تابستان برای جنوب غرب کشور از اهمیت زیادی برخوردار است. بارش مناسب می­تواند موجب افزایش تولیدات کشاورزی و بارش سنگین و ناگهانی می­تواند موجب هدر­رفت محصولات شود. شناخت الگوهای بارشی جنوب غرب ایران در دوره گرم سال برای اتخاذ سیاست­های کلان کشاورزی حیاتی است.
    در این پژوهش، دوره گرم سال از اواخر اسفند­ماه تا نیمه مهر­ماه تعریف شد. سپس با استفاده از داده­های بارش مرکز پیش­بینی اقلیمی (Climate Prediction Center, CPC) با تفکیک مکانی نیم درجه در راستای طول و عرض جغرافیایی، میانگین بارش در جنوب غرب ایران در این دوره گرم محاسبه و بارش­های فرین در خارج از بازه 99 درصد فراوانی تعیین شد. با این تعریف تعداد 64 روز بارش فرین در جنوب غرب ایران در سی سال از 1989 تا 2018 تشخیص داده شد که با استفاده از تحلیل عاملی الگوهای فشار سطحی تبدیل­شده به سطح دریا طبقه­بندی شدند. نتایج نشان داد در دوره گرم سال می­توان پنج الگوی بارش فرین در جنوب غرب ایران تشخیص داد که در این الگوها ترکیبی از سامانه­های فشاری وجود دارد که باعث بارش در جنوب غرب کشور می­شوند. همچنین در این پژوهش نشان داده شد که مهم­ترین عامل رخداد بارش فرین در جنوب غرب کشور در دوره گرم سال، ناوه دریای سرخ است که عامل بارش حدود 47 درصد از موارد بارش فرین است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synoptic pattern of extreme precipitation in southwestern Iran during warm season

نویسندگان [English]

  • Nafiseh Farahani 1
  • Abbas_Ali Aliakbari Bidokhti 2
  • Maryam Gharaylou 3
1 Ph.D Student, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
3 University of Tehran
چکیده [English]

Precipitation is a favorable phenomenon for human due to the water resources for agriculture, drinking water and health purposes. Because of the importance of precipitation, understanding the mechanism of this phenomenon in synoptic, dynamics and climatology has always been of interest for researchers. Although heavy rainfall is useful for water supply, it has destructive effects, such as floods. Heavy rains show the mechanism of precipitation more clearly because the pressure generating systems are more clearly detectable.
   In this study, mean sea level pressure pattern of severe precipitation in southwestern Iran over a period of 30 years was identified and classified. Moreover, the area and time of research were defined, and using the Climate Prediction Center (CPC) precipitation data, the 30-years extreme precipitation with 99th percentiles was determined. There were 64 cases of extreme precipitation from 1989 to 2018 with 99th percentiles.
    Classification of extreme precipitation systems based on mean sea level pressure field was performed with a spatial resolution of 2.5° data from the NCEP-NCAR center. Extreme precipitation in southwestern Iran at warm time of year was classified using factor analysis technique. In this study, it was shown that the pressure systems that cause extreme precipitation in southwestern Iran during the warm season are classified into five main patterns:
(A) The first dominant pattern is created by the Red Sea trough and the low-pressure center of Saudi Arabia. It should be noted that in this pattern, the role of the Red Sea trough is more prominent than the low-pressure Saudi Arabia. In some cases, Saudi Arabia has formed along the Red Sea trough, reflecting the influence of the Red Sea on creation and development of the Saudi Arabian low-pressure center.
(B) The second dominant pattern is formed by the-low pressure of Saudi Arabia and the low-pressure center in eastern Iran. The low-pressure center in the eastern part of Iran has an important role in the precipitation of Iran. It is present in all patterns, but first one. The presence of this low-pressure center has created atmospheric fronts in Iran. The rainfall region of this pattern shows that the cold front activity of this low-pressure center causes precipitation.
(C) The third pattern is similar to the second one, but a high-pressure center located in the north and northwest of Iran. The presence of this high-pressure center indicates the cold air advection behind the low-pressure cold front of eastern Iran.
(D) The low-pressure center of the eastern part of Iran and the high-pressure center in the north and northwest of Iran exist in the fourth pattern. The difference between this pattern and the third one is elimination of Saudi low-pressure center in this pattern. Therefore, the dynamic effects are similar to the third pattern and the extreme precipitation caused by this pattern is due to the cold front of the low-pressure system of the eastern part of Iran.
(E) The fifth pattern, like the third one, consists of low-pressure systems in eastern Iran and Saudi Arabia. The difference between these patterns is presence of low-pressure of Cyprus in the fifth pattern. The low-pressure of Cyprus is cause of classical precipitation pattern (formation of the occluded front) in this pattern. The occluded front in this pattern has expanded from low-pressure eastern of Iran to low-pressure in Cyprus and converted into a secondary cold front over several stages of the frontogenesis process.
   In this research, the southwestern precipitation systems of Iran during the warm season are classified into five patterns. The most important factor of precipitation in the southwestern part of Iran is the Red Sea trough with 48% frequency of occurrence. Therefore, it can be concluded that almost half of the extreme precipitation of southwestern Iran during the warm season is related to this area that extends from the Red Sea trough to the west of Iran.

کلیدواژه‌ها [English]

  • Warm season of year
  • southwest of Iran
  • extreme precipitation
  • factor analysis
  • correlation coefficient
بیدل، ر.، مسعودیان، ا.، 1393، شناسایی توده­های هوای ایران به روش طبقه­بندی همدید مکانی: جغرافیا و توسعه، 35، 1-18.
پوراصغر، ف.، قائمی، ه.، جهانبخش، س.، ساری، ص.، 1392، بررسی شار رطوبت از دریاهای مجاور در دوره­های مرطوب و خشک فصل زمستان نیمه جنوبی کشور: پژوهش­های اقلیم­شناسی، 15، 2-16.
حقیقی، ا.، قلی­زاده، م.، دوستکامیان، م.، قادر، ف.، 1396، بررسی ماهیت و ساختار وردش­های جوّی به هنگام بارش­های بهاری فراگیر ایران: پژوهشهای جغرافیای طبیعی، 49(3)، 523-539.
سبحانی فرد، ی.، اخوان خرازیان، م.، 1391، تحلیل عاملی مدل­سازی معادلات ساختاری و چند­سطحی: انتشارات دانشگاه امام صادق، 252 صفحه.
سلیقه، م.، صادقی­نیا، ع.، 1389، بررسی تغییرات مکانی پرفشار جنب حاره در بارش­های تابستانه نیمه جنوبی ایران: مجله جغرافیا و توسعه، 83، 17-98.
عزیزی، ق.، علیزاده، ت.، 1392، طبقه‌بندی همدید الگوهای گردشی مؤثر بر آب­و­هوای ایران در تراز دریا: جغرافیا و برنامه­ریزی محیطی، 24، 23-38.
فرهادی، ن.، گندمکار، ا.، عساکره، ح.، منتظری، م.، 1393، تحلیل شرایط جوّی توأم با بارش­های تابستانه در زاگرس جنوبی: فصلنامه تحقیقات جغرافیایی، 29(4)، 215-228.
قلی­زاده، م. ح.، محمدی، ب.، 1390، تحلیل شرایط جبهه­زایی در زمان بارش­های سنگین استان کردستان:  فضای جغرافیایی، 35، 19-36.
نظری پور، ح.، دوستکامیان، م.، اسدی، آ.، بیات، ع.، 1393، ناحیه­بندی اقلیمی جنوب و جنوب غرب ایران با رویکرد برنامه­ریزی منطقه‌ای: فصلنامه علمی- پژوهشی برنامه­ریزی منطقه‌ای، 4(15)، 119-132.
ALKhalaf, A. K., and Basset, H. A., 2013, Diagnostic study of a severe thunderstorm over Jeddah: Atmospheric and Climate Sciences, 03(01), 150-164.
Alpert, P., Neeman, B., and Shay-El, Y., 1990, Climatological analysis of Mediterranean cyclones using ECMWF data: Tellus A: Dynamic Meteorology and Oceanography, 42(1), 65-77.
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H., 2004, Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change: International Journal of Climatology:
 
A Journal of the Royal Meteorological Society, 24(8), 1001-1011.
Ashbel, D., 1938, Great floods in Sinai Peninsula, Palestine, Syria and the Syrian desert, and the influence of the Red Sea on their formation: Quarterly Journal of the Royal Meteorological Society, 64(277), 635-639.
Bischoff, S. A., and Vargas, W. M., 2003, The 500 and 1000 hPa weather type circulations and their relationship with some extreme climatic conditions over southern South America: International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(5), 541-556.
Brooks, H. E., and Stensrud, D. J., 2000, Climatology of heavy rain events in the United States from hourly precipitation observations: Monthly Weather Review, 128(4), 1194-1201.
Chen, D., 2000, A monthly circulation climatology for Sweden and its application to a winter temperature case study: International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(10), 1067-1076.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Koussky, V. E., Higgins , R. W., and Janowiak, J. E., 2008, Assessing objective techniques for gauge-based analyses of global daily precipitation: Journal of Geophysical Research: Atmospheres, 113(D4).
Cressman, G. P., 1959, An operational objective analysis system: Monthly Weather Review, 87(10), 367-374.
Dayan, U., Ziv, B., Margalit, A., Morin, E., and Sharon, D., 2001, A severe autumn storm over the middle-east: synoptic and mesoscale convection analysis: Theoretical and Applied Climatology, 69(1-2), 103-122.
De Vries, A. J., Ouwersloot, H. G., Feldstein, S. B., Riemer, M., El Kenawy, A. M., McCabe, M. F., and Lelieveld, J., 2018, Identification of tropical-extratropical interactions and extreme precipitation events in the Middle East based on potential vorticity and moisture transport: Journal of Geophysical Research: Atmospheres, 123(2), 861-881.
De Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and Lelieveld, J., 2013, Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough: Journal of Geophysical Research: Atmospheres, 118(13), 7087-7108.
El-Fandy, M., 1948, The effect of the Sudan monsoon low on the development of thundery conditions in Egpyt, Palestine and Syria: Quarterly Journal of the Royal Meteorological Society, 74(319), 31-38.
Gandin, L. S., 1963, Objective analysis of meteorological field: Gidrometeorologicheskoe Izdate'stvo, 286.
Hitchens, N. M., Baldwin, M. E., and Trapp, R. J., 2012, An object-oriented characterization of extreme precipitation-producing convective systems in the midwestern United States: Monthly Weather Review, 140(4), 1356-1366.
Hitchens, N. M., Brooks, H. E., and Schumacher, R. S., 2013, Spatial and temporal characteristics of heavy hourly rainfall in the United States: Monthly Weather Review, 141(12), 4564-4575.
Huth, R., 2000, A circulation classification scheme applicable in GCM studies: Theoretical and Applied Climatology, 67(1-2), 1-18.
Jiang, N., Hay, J. E., and Fisher, G. W., 2004, Classification of New Zealand synoptic weather types and relation to the Southern Oscillation Index: Weather and Climate, 23, 3-23.
Karl, T. R., Knight, R. W., Easterling, D. R., and Quayle, R. G., 1996, Indices of climate change for the United States: Bulletin of the American Meteorological Society, 77(2), 279-292.
Krichak, S., and Alpert, P., 1998, Role of large scale moist dynamics in November 1–5, 1994, hazardous Mediterranean weather: Journal of Geophysical Research: Atmospheres, 103(D16), 19453-19468.
Lamb, H., 1950, Types and spells of weather around the year in the British Isles: annual trends, seasonal structure of the year, singularities: Quarterly Journal of the Royal Meteorological Society, 76(330), 393-429.
Lund, I. A., 1963, Map-pattern classification by statistical methods: Journal of Applied Meteorology, 2(1), 56-65.
Mahoney, K., Jackson, D. L., Neiman, P., Hughes, M., Darby, L., Wick, G., White, A., Sukovich, E., and Cifelli, R., 2016, Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States: Monthly Weather Review, 144(4), 1617-1632.
Moore, B. J., Mahoney, K. M., Sukovich, E. M., Cifelli, R., and Hamill, T. M., 2015, Climatology and environmental characteristics of extreme precipitation events in the southeastern United States: Monthly Weather Review, 143(3), 718-741.
Ralph, F., and Dettinger, M., 2012, Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010: Bulletin of the American Meteorological Society, 93(6), 783-790.
Raziei, T., Mofidi, A., Santos, J. A., and Bordi, I., 2012, Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation: International Journal of Climatology, 32(8), 1226-1237.
Romero, R., Sumner, G., Ramis, C., and Genovés, A., 1999, A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area: International Journal of Climatology: A Journal of the Royal Meteorological Society, 19(7), 765-785.
Samman, A. E., and Gallus Jr., W. A., 2018, A classification of synoptic patterns inducing heavy precipitation in Saudi Arabia during the period 2000-2014: Atmósfera, 31(1), 47-67.
Shepard, D., 1968, A two-dimensional interpolation function for irregularly-spaced data: Proceedings of the 1968 23rd ACM national conference, 517-524.
Tsvieli, Y., and Zangvil, A., 2005, Synoptic climatological analysis of ‘wet’and ‘dry’Red Sea troughs over Israel: International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1997-2015.
Weng, H., Sumi, A., Takayabu, Y. N., Kimoto, M., and Li, C., 2004, Interannual-interdecadal variation in large-scale atmospheric circulation and extremely wet and dry summers in China/Japan during 1951-2000, part II: Dominant time scales: Journal of the Meteorological Society of Japan, Ser. II, 82(2), 789-804.
Xie, P. et al., 2007, A gauge-based analysis of daily precipitation over East Asia: Journal of Hydrometeorology, 8(3), 607-626.
Yarnal, B., 1993, Synoptic Climatology in Eenvironmental Analysis: A primer: Belhaven Press.
Zangvil, A., and Isakson, A., 1995, Structure of the water vapor field associated with an early spring rainstorm over the eastern Mediterranean: Israel Journal of Earth Sciences, 44, 159-168.
Ziv, B., Dayan, U., and Sharon, D., 2005, A mid-winter, tropical extreme flood-producing storm in southern Israel: synoptic scale analysis: Meteorology and Atmospheric Physics, 88(1-2), 53-63.