تعادل در تخمین مرز توده‌ها و ساختارهای خطی بی‌هنجاری‌های میدان پتانسیل

نوع مقاله : مقاله پژوهشی‌

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

چکیده

گرادیان‌های افقی و قائم و صافی‌هایی که از ترکیب آن‌ها تولید می‌شوند (مانند سیگنال تحلیلی) از متداول‌ترین صافی‌ها برای برجسته‌سازی جزئیات موجود در داده‌های مغناطیس‌سنجی هستند. هنگامی که دامنه تغییرات شدت بی‌هنجاری‌ها در سرتاسر نقشه زیاد باشد، خروجی این صافی‌ها نیز به‌طور مشابه دارای بی‌هنجاری‌هایی با شدت‌های مختلف خواهد بود که هیچگونه تعادلی بین آن‌ها وجود ندارد. این مسئله باعث می‌شود تا بی‌هنجاری‌های کم‌شدت در میان بی‌هنجاری‌های با شدت بالاتر پنهان شوند. در این مقاله صافی‌هایی با خروجی متعادل معرفی می‌شود. این دو صافی شامل سیگنال تحلیلی متعادل و صافی انحنای پروفیل است. این صافی‌ها بر روی داده‌های مغناطیس‌سنجی زمینی معدن سنگ‌آهن سورک یزد و همچنین داده‌های مغناطیس هوایی کراتون ییلگران استرالیای غربی به کار برده شده است. کاربرد این صافی در محدوده معدن سنگ آهن سورک سبب تعیین توده زیرسطحی جدیدی شد که این موضوع با حفاری‌های اکتشافی نیز اثبات شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Balancing in edge detection of bodies and linear structures from potential filed anomalies

نویسندگان [English]

  • Kamal Alamdar
  • Mostafa Golabi
چکیده [English]

Gradient methods have been extensively used in the interpretation of near-surface potential field anomalies because they increase the resolution of the edges of geologic sources and decrease the effect of the background or ‘regional’ field. Two gradient-based methods, namely the Euler and analytic signal, have proven particularly effective in the semi-automatic interpretation of magnetic anomaly data (i.e., determination of source outline and the depths of sources). Aeromagnetic data often contain anomalies with a large range in amplitude. Processed aeromagnetic images, such as horizontal and vertical derivatives, similarly contain features with large and small amplitudes. The smaller amplitude anomalies might be of considerable geological interest, but they can be hard to delineate among those of larger amplitude. Automatic Gain Control (AGC) filters divide the data at each point by an average value computed in a window centered on that point, thus produce a balanced image where all anomalies have similar amplitude. However, their output depends strongly on the window size, (Rajagopalan and Milligan, 1995), which makes them unsuitable for applications involving aeromagnetic data sets that in most cases contain anomalies of different size. In the last few years, there has been a surge of interest in the development of filters based on the derivatives of aeromagnetic data that produce a balanced output but avoid the window-size problem of the standard AGC filter. The first filter to be introduced was the tilt angle, (Miller and Singh, 1994), which is a balanced vertical derivative. Verduzco et al. (2004) suggest using the total horizontal derivative of the tilt angle as an interpretive tool. Wijns et al. (2005) developed the theta map, a balanced total horizontal derivative, Cooper and Cowan (2006) introduced a horizontal tilt angle, which is a balanced horizontal derivative. Another approach to edge detection based on derivatives was the use of the balanced windowed standard deviation. The analytic signal, which is a complex function and makes use of the Hilbert transform, has been shown to be effective in interpretation of the subsurface magnetic contacts (e.g., Nabighian, 1972, 1974). A geologic contact or fault with significant susceptibility contrast is detected by mapping the maxima of the simple analytic signal, which is composed of the two horizontal and one vertical gradient. The analytic signal response from the larger and shallow sources is clearly visible, but it is very faint for deeper bodies. To enhance this image and bring out the detail in smaller amplitude anomalies, in this paper a balanced analytic signal was computed as followed (Cooper, 2009):
where H x and H y are the Hilbert transforms of the analytic signal in the x- and y- directions, respectively. The width of anomalies in the balanced analytic signal amplitude image has increased slightly compared with those in the original analytic signal amplitude image, which might make accurate contact mapping more difficult. The curvature of geophysical data can be a useful attribute, and in the past it has been applied to potential-field data (Phillips et al., 2007) and reflection seismic data (Blumentritt et al., 2006). In this case, the profile curvature was used, defined as (Mitasova and Jarosalav, 1993):
where, and . In this paper we demonstrated the application of these filters to synthetic magnetic data and as well as real magnetic data from Soork Iron mine and the aeromagnetic data from Yilgran Craton in Australia. Application of this filter to the magnetic data from Soork Iron ore lead to detection of a new hidden body which is proved by exploratory drilling.
 

کلیدواژه‌ها [English]

  • Potential field
  • profile curvature
  • balanced analytic signal
  • Soork
  • Yilgran
انصاری، ع.ح.، علمدار، ک.، و کامکار روحانی، ا.، 1391، تراس‌بندی در تفسیر داده‌های پتانسیل: مجله فیزیک زمین و فضا، 38(2)، 157-166.
Ansari, A. H., and Alamdar, K., 2011, A new edge detection method based on the analytic signal of tilt angle (ASTA) for magnetic and gravity anomalies: Iranian Journal of Science and Technology, A2, 81-88.
Blakely, R., 1995, Potential Theory in Gravity and Magnetic Applications: Cambridge University Press.
Blumentritt, C. H., Marfurt, K. J., and Sullivan, E. C., 2006, Volume-based curvature computations illuminate fracture orientations — Early to midPaleozoic, Central Basin Platform, west Texas: Geophysics, 71(5), B159–B166.
Cooper, G. R. J., 2009, Balancing images of potential-field data: Computers & Geosciences, 64, 17–20.
Cooper, G. R. J., and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase: Computers & Geosciences, 32, 1585–1591.
perCoo G. R. J., and Cowan, D. R., 2008, Edge enhancement of potential-field data using normalized statistics: Geophysics, 73(3), H1–H4.
Lahti, I., and Karinen, T., 2010, Tilt derivative multiscale edges of magnetic data: The Leading Edge, 29, 24–29.
Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71(2), B13–B16.
Ma, G., and Du, X., 2012, An improved analytic signal technique for the depth and structural index from 2D magnetic anomaly data: Pure and Applied Geophysics, 169, 2193–2200.
Miller, H. G., and Singh,V., 1994, Potential field tilt—A new concept for location of potential field sources: J. Applied Geophysics, 32, 213–217.
Mitasova, H., and H. Jarosalav, 1993, Interpolation by regularized spline with tension: II—Application to terrain modeling and surface geometry analysis: Mathematical Geology, 25, 657-669.
Moon, W. M., A. Ushah, V. Singh, and B. Bruce, 1988, Application of 2-D Hilbert transform in geophysical imaging with potential field data: IEEE Transactions on Geoscience and Remote Sensing, 26, 502-510.
Nabighian, M. N., 1972, The analytical signal of 2D magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation: Geophysics, 37, 507–517.
Phillips, J. D., Hansen, R. O., and Blakely, R. J., 2007, The use of curvature in potential-field interpretation: Exploration Geophysics, 38, 111–119.
Rajagopolan, S., and Milligan,P., 1995, Image enhancement of aeromagnetic data using automatic gain control: Exploration Geophysics, 25, 173–178.
Salem, A., Williams, S., Fairhead, J. D., Ravat, D., and Smith, R., 2007, Tiltdepth method: A simple depth estimation method using first-order magnetic derivatives: The Leading Edge, 26, 1502–1505.
Verduzco, B., Fairhead,J. D., Green, C. M., and MacKenzie, C., 2004, New insights into magnetic derivatives for structural mapping: The Leading Edge, 23, 116–119.
Wijns, C., Perez, C., and Kowalczyk, P., 2005, Theta map: Edge detection in magnetic data: Geophysics, 70(4), L39–L43.