توفان‌های‌ خاک در منطقه غرب و جنوب غرب ایران و تأثیر آنها بر شار‌های تابشی: مطالعه موردی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 پژوهشکده هواشناسی، تهران، ایران

2 موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 دانشگاه عالی دفاع ملی، تهران، ایران

چکیده

توفان‌های خاک که امروزه در بسیاری از مناطق ایران (به‌خصوص در غرب و جنوب غرب ایران) فراوانی وقوع بالایی دارد، علاوه بر تأثیر نامطلوب بر سلامتی بشر از طریق آلودگی هوا، تأثیر قابل‌ ملاحظه‌ای بر خواص نوری و توازن تابشی منطقه می‌گذارد. در مطالعه حاضر اثرات تابشی ناشی از توفان خاک در بازه زمانی 16 تا 21 ژوئن 2012 در منطقه غرب و جنوب غرب ایران با استفاده از مدل عددی WRF-Chem بررسی شده است. ابتدا عملکرد مدل با استفاده از داده­های اندازه­گیری ایستگاهی (ایستگاه­های اندازه­گیری آلودگی وابسته به سازمان محیط‌زیست و ایستگاه­های AERONET) و داده­های ماهواره­ای MODIS، OMI و CALIPSO مورد ارزیابی قرار گرفت. نتایج ارزیابی مدل نشان از برآورد بیشتر غلظت PM10 در ایستگاه اهواز و در اغلب موارد برآورد کمتر مقادیر عمق نوری هواویزها (aerosol optical depth) در ایستگاه­های AERONET دارد. با این حال، عملکرد مدل در شبیه­سازی روند تغییرات و میزان گرد و خاک در طی توفان مذکور قابل قبول است، به‌طوری‌که توزیع افقی و قائم گرد و خاک شبیه‌سازی‌شده توسط مدل و مشاهده شده توسط ماهواره الگوهای تقریباً مشابهی را نشان می‌دهند. ذرات گرد و خاک در سقف جوّ و سطح زمین دارای اثرهای سرمایشی، اما در میانه جوّ دارای اثر گرمایشی هستند. میانگین پریشیدگی تابش طول موج کوتاه توسط گرد و خاک در منطقه غرب و جنوب غرب ایران در بازه زمانی 17 تا 20 ژوئن 2012 در سطح زمین، میانه جوّ و سقف جوّ به‌ترتیب 27/7-، 79/1 و W m-2 47/5 برآورد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Dust storms in west and southwest Iran and their impact on radiation fluxes: A case study

نویسندگان [English]

  • Saeid Farhadipour 1
  • Majid Azadi 1
  • Abbasali Aliakbari Bidokhti 2
  • Omid Alizadeh Choobari 2
  • Habib Allah Sayari 3
1 Atmospheric Science and Meteorological Research Centre (ASMERC), Tehran, Iran
2 Institute of Geophysics, University of Tehran, Tehran, Iran
3 Up Most Strategic University, Tehran, Iran
چکیده [English]

Dust aerosols make a considerable contribution to the climate system through their radiative effects due to their abundance in the atmosphere. Recent observations suggest that over the past decade, dust events have become more frequent in many parts of Iran, especially in the west and southwest. Through their radiative forcing, dust aerosols have significant effects on the regional radiation budget of the atmosphere, while their adverse effects on human health have also raised serious concerns. The primary aim of the present study is to examine the radiation effects associated with a severe dust storm that occurred in west and southwest Iran on 16 to 21 June 2012. To this end, the Weather Research and Forecasting with Chemistry (WRF-Chem) model was used. Two simulations were conducted: a model setup that did not include dust aerosols, and the one that included dust aerosols and their feedback to the atmosphere. A two-way interactive nested domain (nesting ratio:1:3) simulations were performed using 98 Í 90 and 151 Í 139 horizontal grid points, respectively. In the vertical, 27 σ-levels were used. The grid spacing for the two domains were 45 and 15 km, respectively. Simulations ran from 16 to 22 June 2012, and the first 24 hours was considered as the spin-up time. Meteorological initial conditions were obtained from the Global Forecast System (GFS) data at 0.5˚Í 0.5˚ resolution. The performance of the model was evaluated using the available observed data, including PM10 observations in Ahwaz located in southwest Iran, available AErosol RObotic NETwork (AERONET) data in nearby areas, and aerosol products of the Moderate Resolution Imaging Spectroradiometer (MODIS), the Ozone Monitoring Instrument (OMI) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) carried on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft. Results indicate that PM10 concentration in Ahwaz is overestimated by the model, while simulated aerosol optical depth (AOD) is underestimated compared to the observed AERONET data. Relatively, good agreement is found between the model results and satellite products, and temporal evolution of the dust events is also well-simulated. Thus, generally, the performance of the model is acceptable for accurate simulation of the dust event. Our analysis indicated that radiative effects of dust particles cause cooling at the surface and top of the atmosphere, but warming in the middle of the troposphere. On average, perturbation of shortwave radiation by dust aerosols in the west, and southwest Iran is estimated to be -7.27, 1.79 and -5.47 W m-2 at the surface, in the middle and at the top of the atmosphere, respectively. Average perturbation of the longwave radiation by dust aerosols over the same region was estimated to be 2.2, -1.61 and 0.59 W m-2 at the surface, in the middle and at the top of the atmosphere, respectively. Thus, the net (shortwave + longwave) radiative effect of dust aerosols averaged in west and southwest Iran is found to be -5.07, 0.19 and -4.88 W m-2 at the surface, in the middle and at the top of the atmosphere, respectively.

کلیدواژه‌ها [English]

  • Dust Storm
  • WRF-Chem
  • Satellite data
  • perturbation of radiation
خراسانی، ن.، چراغی، م.، ندافی، ک.، و کرمی، م.، 1381، بررسی و مقایسه کیفیت هوا در شهرهای تهران و اصفهان در سال 1378 و ارائه راهکارهایی برای بهبود آن: مجله منابع طبیعی ایران، 55(4)، 559-568.
عطایی، ف.، ایران‌نژاد، پ.، مزرعه فراهانی، م.، علیزاده چوبری، ا.، 1395، شبیه‌سازی توزیع ذرات گرد و غبار در مقیاس جهانی و تأثیر آنها بر شارش‌های تابشی با استفاده از مدل WRF/Chem : فیزیک زمین و فضا، 42(3)، 619-632.
علیزاده چوبری، ا.، 1396، مطالعه عددی اثر غیر مستقیم هواویزها بر تابش طول موج کوتاه و بلند: مطالعه موردی، فیزیک زمین و فضا، 43(3)، 441-450.
فرهادی پور، س.، 1396، بررسی پدیده‌های گردوغبار سال‌های اخیر در منطقه غرب ایران با استفاده از داده‌های میدانی و شبیه‌سازی عددی با چند طرحواره گسیل گردوغبار: پایان‌نامه دوره دکتری هواشناسی، پژوهشکده هواشناسی.
مشایخی، ر.، ایران‌نژاد، پ.، بیدختی، ع. ع.، فایشتر، ی.، 1388، بررسی فرایندهای میکروفیزیکی مؤثر بر ذرات هواویز جوی با استفاده از سامانه جفت‌ شده طرحواره هواویز HAM و مدل میان‌‌مقیاس WRF : مجله ژئوفیزیک ایران، 3(2)، 58-76.
Abdi Vishkaee, F., Flamant, C., Cuesta, J., Oolman, L., Flamant, P., and Khalesifard, H. R., 2012, Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study: Journal of Geophysical Research, 117, D03201.
Ackerman, A. S., Toon, O., Stevens, D., Heymsfield, A., Ramanathan, V., and Welton, E., 2000, Reduction of tropical cloudiness by soot: Science, 288(5468), 1042-1047.
Albrecht, B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness: Science, 245(4923), 1227–1230.
Alizadeh‐Choobari, O., Ghafarian, P., and Owlad, E., 2016, Temporal variations in the frequency and concentration of dust events over Iran based on surface observations: International Journal of Climatology, 36(4), 1575–2138.
Alizadeh-Choobari, O., and Gharaylou, M., 2017, Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation: Atmospheric Research, 185, 53-64.
Alizadeh-Choobari, O., Sturman, A., and Zawar-Reza, P., 2015, Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem: Meteorology and Atmospheric Physics, 127(6), 635-648.
Change, C., 2001, The Scientific Basis. Intergovernmental Panel on Climate Change. by JT Houghton, Y. Ding, D. J Griggs, et al.
Chen, F., and Dudhia, J., 2001, Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I, Model implementation and sensitivity: Monthly Weather Review, 129(4), 569-585.
Chiapello I., Bergametti G., Chatenet B., Dulac F., Jankowiak I., Liousse C., and Soares E. S., 1999, Contribution of the different aerosol species to the aerosol mass load and optical depth over the northeastern tropical Atlantic: Journal of Geophysical Research 104(D4), 4025-4035.
Choi, H., Shin, D. W., Kim, W., Doh, S. J., Lee, S. H., and Noh, M., 2011, Asian dust storm particles induce a broad toxicological transcriptional program in human epidermal keratinocytes: Toxicology Letters, 200(1), 92-99.
Deng, A., Stauffer, D. R., Dudhia, J., Otte, T., and Hunter, G. K., 2007, Update on analysis nudging FDDA in WRF-ARW. Paper presented at the 8th Annual WRF User’s Workshop: National Center for Atmospheric Research, Boulder, Colorado.
Fairall, C., Bradley, E. F., Hare, J., Grachev, A., and Edson, J., 2003, Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16(4), 571-591.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model: Journal of Geophysical Research, 106(D17), 20255-20273.
Grell, G. A., and Freitas, S. R., 2013, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling: Atmospheric Chemistry and Physics Discussion, 13(9), 23845-23893.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B., 2005, Fully coupled “online” chemistry within the WRF model: Atmospheric environment, 39(37), 6957-6975.
Hansen, J., Sato, M., and Ruedy, R., 1997, Radiative forcing and climate response: Journal of Geophysical Research, 102(D6), 6831-6864.
Hasanean, H., 2004, Middle East Meteorology. Avaliable online: http://www.eolss.net/ (accessed on 7 August 2015).
Holben, B. N., Eck, T., Slutsker, I., Tanre, D., Buis, J., Setzer, A., Nakajima, T., 1998, AERONET—A federated instrument network and data archive for aerosol characterization: Remote Sensing of Environment, 66(1), 1-16.
Hong, S. Y., Noh, Y., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes: Monthly Weather Review, 134(9), 2318-2341.
Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, É., Miháliková, E., Pastuszka, J. S., and Meliefste, K., 2001, PM 10 and PM 2.5 concentrations in Central and Eastern Europe: Results from the Cesar study: Atmospheric Environment, 35(15), 2757-2771.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R., 2004, Aerosol properties over bright-reflecting source regions: IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569.
Hua, N. P., Kobayashi, F., Iwasaka, Y., Shi, G. Y., and Naganuma, T., 2007, Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan: Aerobiologia, 23(4), 291-298.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008, Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models: Journal of Geophysical Research, 113, D13103.
Kaufman, Y., Tanré, D., Remer, L. A., Vermote, E., Chu, A., and Holben, B., 1997, Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer: Journal of Geophysical Research, 102(D14), 17051-17067.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V., 2004, Measurement of the effect of Amazon smoke on inhibition of cloud formation: Science, 303(5662), 1342-1345.
Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P., 2014, WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget: Atmospheric Chemistry and Physics, 14(5), 2431-2446. doi:10.5194/acp-14-2431-2014
Li X, Maring H, Savoie D, Voss K, Prospero J. M., 1996, Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds: Nature, 380(6573), 416-419.
Lo, J. C. F., Yang, Z. L., and Pielke, R. A., 2008, Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model: Journal of Geophysical Research, 113, D09112.
McCormick, R. A., and Ludwig, J. H., 1967, Climate modification by atmospheric aerosols: Science, 156(3780), 1358-1359.
Miller R. L., Tegen I, and Perlwitz J., 2004, Surface radiative forcing by soil dust aerosols and the hydrologic cycle: Journal of Geophysical Research 109(D04), 203.
Morrison, H., Thompson, G., and Tatarskii, V., 2009, Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes: Monthly Weather Review, 137(3), 991-1007.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E., 2002, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product: Reviews of Geophysics, 40(1), 1002.
Rosenfeld, D., 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall: Geophysical Research Letters, 26 (20), 3105.
Rosenfeld, D., Lensky, I. M., 1998, Satellite-based insights into precipitation formation processes in continental and maritime convective clouds: Bulletin of the Amerian Meteorological Society, 79 (11), 2457–2476.
Rosenfeld, D., Rudich, Y., Lahav, R., 2001, Desert dust suppressing precipitation: A possible desertification feedback loop: Proceedings of the National Academy of Sciences of the United States of America, 98(11), 5975–5980.
Sehatkashani, S., Kamali, G., Vazifedoust, M., and Aliakbari, B. A., 2016, Study of air quality over west and south west Iran using aerosol optical thickness products of: Civil Engineering, 32-2(1.2), 91-97.
Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., and Saki, H., 2012, The evaluation of PM 10, PM 2.5, and PM 1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010: Journal of Arid Environments, 77, 72-83.
Tegen, I., and Fung, I., 1994, Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research: Atmospheres, 99(D11), 22897-22914.
Tegen, I., Werner, M., Harrison, S., and Kohfeld, K., 2004, Relative importance of climate and land use in determining present and future global soil dust emission: Geophysical Research Letters, 31, L05105.
Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds: Journal of Atmospheric Sciences, 34 (7), 1149–1152.
Winker, D., Tackett, J., Getzewich, B., Liu, Z., Vaughan, M., and Rogers, R., 2013, The global 3D distribution of tropospheric aerosols as characterized by CALIOP: Atmospheric Chemistry and Physics, 13(6), 3345-3361.
Woodward, S., 2001, Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model: Journal of Geophysical Research 106(D16): 18155–18166.
Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J., Zaveri, R., Huang, J., 2013, Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmospheric Chemistry and Physics, 13(7), 10733–10753.