حل عددی معادله فرارفت دوبعدی در هندسه کروی روی یک شبکه یین- یَنگ با استفاده از روش مک‌کورمک فشرده مرتبه چهارم

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکترای هواشناسی، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

3 استاد، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

با توجه به هندسه تقریباً کروی جو و اقیانوس، حل عددی معادلات حاکم بر این لایه­ها نیازمند استفاده از یک شبکه کروی مناسب است. شبکه یین- یَنگ یکی از انواع شبکه­های هم­پوشان است. این شبکه ترکیبی از دو شبکه به نام­های یین و یَنگ، با یک هم‌پوشانی مختصر است که هر دو، شبکه­هایی متعامد بر پایه شبکه متداول طول و عرض جغرافیایی هستند. هیچ نقطه تکینه‌ای روی این شبکه وجود ندارد و فاصله­بندی شبکه‌ای آن شبه­یکنواخت است. در نقاط مرزی هر دو مؤلفه شبکه‌ای آن به استفاده از روش­های درون­یابی نیاز است.
در این پژوهش، معادله فرارفت دوبعدی در یک آزمون موردی استاندارد شناخته­شده با استفاده از روش مک­کورمک فشرده مرتبه چهارم با پیمایش زمانی رونگِ- کوتای مرتبه چهارم روی یک شبکه یین- یَنگ به­طور عددی حل شده است. برای ایجاد امکان مقایسه نحوه عملکرد الگوریتم توسعه­داده­شده روی شبکه یین- یَنگ، این الگوریتم روی شبکه کروی استاندارد بر پایه طول و عرض جغرافیایی نیز پیاده­سازی شده است. نتایج نشان می­دهند که استفاده از روش­های مک­کورمک فشرده مرتبه چهارم برای حل معادله فرارفت دوبعدی در هندسه کروی روی شبکه یین- یَنگ، در کاهش هزینه محاسباتی بسیار مؤثر بوده است، اما با محاسبه خطا با استفاده از نُرم­های قدرمطلق، مربع و بی­نهایت، افزایش خطا در حدود یک مرتبه بزرگی نسبت به حل عددی این معادله با همین روش روی شبکه بر پایه طول و عرض جغرافیایی مشاهده می­شود که این خطا می­تواند به­دلیل استفاده از درون­یابی در محاسبات باشد. به­هرحال، دقت این روش روی این شبکه قابل قبول است و نتایج کیفی این حل عددی نیز این موضوع را تأیید می­کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical solution of two-dimensional advection equation in spherical geometry using the fourth-order compact MacCormack scheme on a Yin-Yang grid

نویسندگان [English]

  • Rasoul Mirzaei Shiri 1
  • sarmad Ghader 2
  • Alireza Mohebalhojeh 3
1 Ph.D. Student, Space Physics Department, Institute of Geophysics, University of Tehran
2 Associate Professor, Space Physics Department, Institute of Geophysics, University of Tehran
3 Professor, Space Physics Department, Institute of Geophysics, University of Tehran
چکیده [English]

Due to the approximately spherical nature of the atmosphere, oceans and other layers of the Earth and the complex nature of atmospheric and oceanic flows, numerical solution of their governing equations requires using an appropriate coordinate on the spherical geometry. All spherical grids defined for the spherical surface or shell, generally have their own advantages and disadvantages. In general, it can be said that there is no spherical grid which has all the following characteristics:
1-      The grid is orthogonal;
2-      There is no singularity;
3-      There is no grid convergence problem; and defined over entire spherical surface.
Thus, we have to discard one of these incompatible conditions. An overset grid is a type of grid that divides a spherical surface into subregions. Yin–Yang grid belongs to the family of overset grids. This coordinate is composed of two grid components named Yin and Yang with partial overlapping at their boundaries. Some of the advantages of the Yin–Yang grids are as follows:
1-      Yin and Yang grid components are both orthogonal and based on the conventional latitude–longitude grid;
2-      The singular points are absent;
3-      The metric factors of the both grid components are analytically known;
4-      The grid lengths are uniform approximately;
5-      It requires less grid points than the conventional latitude–longitude grid; and
6-      We can adapt the available latitude–longitude discretization and codes for the use with the Yin–Yang grids.
In addition, we have to use interpolation for setting boundary conditions for the two grid components. The interpolation scheme that has been used in this study is bilinear.
In this research, a type of the Yin–Yang grid called the rectangular (basic) is applied to solve the two-dimensional advection equation for a well-known test case using the fourth-order compact MacCormack scheme. Furthere, the fourth-order Runge–Kutta method is used for time stepping. Results show that using the Yin–Ying grids to solve the advection equation is highly effective in reducing the computational cost compared to the conventional latitude–longitude grid, however the use of rectangular Yin–Yang grid entails a lower accuracy than the conventional latitude–longitude grid.
In this numerical test, global errors are computed using the absolute-value, Euclidean and maximum norms. By calculating the errors using these norms, there is an order of magnitude increase in the errors in rectangular Yin-Yang grid compared to the conventional latitude–longitude grid. This increase in error can come from the inevitable interpolation process involved in the Yin-Yang grid.

کلیدواژه‌ها [English]

  • Yin-Yang grid
  • spherical coordinate
  • fourth-order compact MacCormack scheme
  • Runge-Kutta
  • two-dimensional advection equation
میرزائی شیری، ر.، قادر، س.، مزرعه فراهانی، م.، بیدختی، ع. ع.، 1396، حل عددی معادلات آب کم­عمق با روش مک­کورمک فشرده مرتبه چهارم: مجله فیزیک زمین و فضا، 43(1)، 209-228.
Buning, P. G., Chiu, I. T., Obayashi, S., Rizk, Y. M., and Steger, J. L., 1988, Numerical simulation of the integrated space shuttle vehicle in ascent: AIAA Paper, 88-4359-CP, 265-283.
Cao, H. V., Su, T. Y., and Rogers, S. E., 1998, Navier-Stokes analysis of a 747 high lift configuration: AIAA, 98-2623, 402-409.
Duque, E. P. N., Strawn, R. C., Ahmad, J., and Biswas, R., 1996, An overset grid Navier-Stokes Kirchhoff-surface method for rotorcraft aeroacoustic predictions: AIAA, 96-0152, 1-13.
Durran, D. R., 2010, Numerical Methods for Fluid Dynamics with Applications to Geophysics: Springer.
Esfahanian, V., Ghader, S., and Mohebalhojeh, A. R., 2005, On the use of super compact scheme for spatial differencing in numerical models of the atmosphere: Quarterly Journal of the Royal Meteorological Society, 131, 2109-2130.
Ghader, S., Mohebalhojeh, A. R. and Esfahanian, V., 2009, On the spectral convergence of supercompact finite-difference schemes for the f-plane shallow-water equations: Monthly Weather Review, 137, 2393-2406.
Ghader, S., and Nordström, J., 2015, High-order compact finite difference schemes for the vorticity–divergence representation of the spherical shallow water equations: International Journal of Numerical Methods in Fluids, 78, 709–738.
Goddard, J. C., 2014, Viability of the Yin–Yang grid as a basis for future generations of atmospheric models: Ph.D. thesis, University of Exeter, Exeter, United Kingdom, 193 pp.
Hixon, R., and Turkel, E., 2000, Compact implicit MacCormack–type scheme with high accuracy: Journal of Computational Physics, 158, 51–70.
JavanNezhad, R., Meshkatee, A. H., Ghader, S., and Ahmadi-Givi, F., 2016, High-order
     compact MacCormack scheme for two-
     dimensional compressible and non-hydrostatic equations of the atmosphere: Dynamics of Atmospheres and Oceans, 75, 102-117.
Kageyama, A., and Sato, T., 2004, “Yin-Yang grid”: An overset grid in spherical geometry: Geochemestry, Geophysics, Geosystems, 5(9), doi: 10.1029/2004GC000734.
Kageyama, A., 2005, Dissection of a sphere and Yin-Yang grids: Journal of The Earth Simulator, 3, 20-28.
Lia, X., Shen, X., Peng, X., Xiao, F., Zhuang, Z., and Chen, C., 2012, Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme: Procedia Computer Science, 9, 1004-1013.
Meakin, R. L., 1992, Computations of the unsteady flow about a generic wing/pylon/finned-store configuration: AIAA, 92-4568-CP, 564-580.
Meakin, R. L., 1993, Moving body overset grid methods for complete aircraft tiltrotor simulations: AIAA, 93-3350-CP, 576-588.
Mohebalhojeh, A. R., and Dritschel, D. G., 2007, Assessing the numerical accuracy of complex spherical shallow water flows: Monthly Weather Review, 135, 3876–3894.
Rogers, S. E., Cao, H. V., and Su, T. Y., 1998, Grid generation for complex high-lift configuration: AIAA, 98-3011, 1-11.
Staniforth, A., and Thuburn, J., 2012, Horizontal grids for global weather and climate prediction models: A review: Quarterly Journal of the Royal Meteorological Society, 138, 1-26.
Steger, J. L., 1982, On application of body conforming curvilinear grids for finite difference solution of external flow: in Numerical Grid Generation, Thompson, J. F., ed., North-Holland, New York, 295-316.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G., 2005, A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR): National Center for Atmospheric Research, Boulder Colorado, Mesoscale and Microscale Meteorology Division.
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N., 1992, A standard test set for numerical approximation to the shallow water equations in spherical geometry: Journal of Computational Physics, 102, 211-224.