مقایسه موردی عملکرد تابستانه راهبردهای توسعه بام سبز و بام خنک بر کیفیت هوا در کلان‌شهر تهران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشیار، گروه علوم جوی و اقیانوسی (غیرزیستی)، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 دانشجوی دکتری رشته هواشناسی، گروه علوم جوی و اقیانوسی (غیرزیستی)، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

پیامدهای نامطلوب گسترش کلان­شهرها ازجمله جزیره گرمایی شهری و آلودگی هوا توجه مدیران شهری را به اتخاذ راهکارهای بهبود شرایط محیطی جلب کرده است. با توجه به مساحت زیاد بام­ها در مناطق شهری، به­کارگیری فناوری­های نوین و سازگار با محیط زیست ازجمله توسعه بام سبز و خنک با تعدیل جزیره گرمایی می­تواند نقش مثبتی در کاهش مصرف انرژی سرمایشی و بهبود کیفیت هوا ایفا کند. به­منظور بررسی بازخورد متقابل پارامترهای هواشناسی و تغییر در ساختار شهری و مطالعه اثرهای محتمل جانبی آن بر کیفیت هوا، شبیه­سازی عددی راهبردهای بام سبز و بام خنک با استفاده از مدل کنوپی شهری جفت­شده هواشناسی- شیمی جو (WRF/Chem/SLUCM) در بازه زمانی 15 تا 30 ژوئن سال 2016 در کلان­شهر تهران انجام شده است. نتایج نشان می­دهد که توسعه بام خنک با میانگین شبانه­روزی کاهش دما (C˚ 65/0-) و کاهش شار گرمای محسوس (2 W/m57-) نقش مثبتی در تعدیل جزیره گرمایی تهران دارد. همچنین کاهش غلظت سطحی آلاینده‌های جوی نشان می­دهد که کاهش ارتفاع لایه مرزی و تلاطم در نتیجه کاهش دما تغییر محسوسی در وضعیت کیفیت هوا ایجاد نکرده است. توسعه بام سبز، کاهش (افزایش) روزانه (شبانه) دمای هوا را به همراه داشته است. افزایش دما در طول شب محسوس (C˚ 53/0+) و نتیجه گسیلندگی بالای پوشش گیاهی و همچنین کاهش سرعت باد در مجاورت سطح بام سبز است که روند تهویه طبیعی شهر را کندتر می­کند. مقایسه عملکرد این راهبردها نشان می­دهد که بام خنک اثر سرمایشی محسوس­تری نسبت به بام سبز ایجاد می­کند و روند کاهش آلاینده­ها به­ویژه در طول شب در راهبرد بام خنک مطلوب­تر ارزیابی می­شود؛ بنابراین با توجه به وابستگی اثربخشی سرمایشی بام سبز به میزان رطوبت خاک و مقایسه هزینه‌های احداث بام خنک و نیاز نداشتن آن به زیرساخت­های خاص، توسعه بام خنک در کلان­شهر تهران توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Case Study of Summer Performance of Green Roof and Cool Roof Development Strategies on Air Quality in Tehran Metropolis

نویسندگان [English]

  • Hossein Malakooti 1
  • Somayeh Arghavani 2
  • Vali Sheikhy 2
1 Associate Prof., Department of Marine and Atmospheric Science (non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
2 Ph.D Candidate, Department of Marine and Atmospheric Science (non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
چکیده [English]

The unfavorable consequences of the expansion of the metropolitans, including urban heat island and air pollution, have attracted the attention of urban managers to strategies for improving environmental conditions. In recent years, along with population growth and high energy consumption, as well as building materials replacing permeable surfaces and urban green spaces, deteriorate the urban heat island phenomenon and air quality in Tehran. Given the significant area of roof surfaces in urban areas, the application of new and environmentally friendly technologies such as the development of cool and green roofs, with heat island modification impact, can play a positive role in reducing cooling energy consumption and improving air quality. Therefore, to study the mutual interaction between meteorological parameters and changes in the urban structure and its possible side effects on air quality, numerical simulation of green roof and cool roof strategies based on the urbanized coupled meteorological-chemical model (WRF/Chem/SLUCM) during the period June 15 to 30, 2016, have been conducted in Tehran metropolitan area. Results show that the development of cool roofs with an averaged diurnal temperature decrease (-0.65°C) and a decrease in the heat flux (-57 W/m2) has a positive role in the reduction of Tehran heat island. Also, the relative reduction of atmospheric pollutant concentrations has also been achieved in numerical simulations. It shows that the decrease in the height of the boundary layer and turbulence process as a result of the decrease in near-surface temperature has not caused a significant change in the air quality in Tehran. The development of green roofs has led to a daily (nightly) decrease (increase) in the air temperature. The increase in temperature during the night was noticeable (up to +0.53°C), and it is a result of the high emissivity of vegetation, as well as a decrease in wind speed in the vicinity of green roof surfaces which slows down the natural ventilation over the city. Furthermore, an increase in the near-surface humidity also predicted in both strategies which improves the environmental comfort satisfaction in the summer hot and dry days. Comparison of these strategies performance shows that cool roof has a significantly sensible cooling effect than green roofs, and the process of reducing pollutants, especially at night, is more favorable in cool roofing strategy. Consequently, since the cooling efficiency of green roofs depends on soil moisture content, as well as comparing construction costs and no need for specific infrastructure, the development of cool roofs in Tehran metropolis is recommended.

کلیدواژه‌ها [English]

  • Air quality
  • green roof
  • cool roof
  • WRF/Chem/SLUCM
  • Tehran metropolis
اصلانی، ر.، 1392، بررسی تأثیر استفاده از فناوری Aبام خنک@ بر روی پتانسیل جزایرحرارتی شهری (مطالعه موردی: کلان­شهر تهران): پایان­نامه دوره کارشناسی ارشد رشته عمران، دانشگاه تهران، تهران، 94 صفحه.
پورصفری، ف.، اسکندری، س.، زاهدی، م.، 1394، بام سبز یا باغ­بام؟ نگاهی به تجربه­های اخیر تهران: ویژه‌نامه منظر، 31.
کریمیان، ز.، 1395، شبیه­سازی اثرگذاری زیست­محیطی بام­های سبز گسترده و فشرده در شهر یزد: مؤسسه علوم باغبانی ایران، 47(4)، 681-691.
شرکت کنترل کیفیت هوا، 1397، گزارش سالانه کیفیت هوای تهران در سال ۱۳۹۶، QM97/02/01(U)/1.
مقبل، م.، عرفانیان سلیم، ر.، قدیمی، م.، 1396، ارزیابی اثر بام­های سبز بر دما، رطوبت و غلظت دی‌اکسید کربن موجود در هوای شهر تهران و نقش آنها در توسعه پایدار شهری: مجله محیط زیست طبیعی (مجله منابع طبیعی ایران)، 70(1)، 181-195.
ملکوتی، ح.، ارغوانی، س.، علی اکبری بیدختی، ع.، 1398، ارزیابی عددی تأثیرات توسعه کمربند سبز بر هواشناسی محلی و کیفیت هوا در کلان­شهر تهران: محیط شناسی، 45(3)، 411-425.
Ackermann, I. J., Hass, H., et al., 1998, Modal aerosol dynamics model for Europe: Development and first applications: Atmospheric Environment, 32(17), 2981–2999.
 
 
Akbari, H., Levinson, R., et al., 2005, Monitoring the energy-use effects of cool roofs on California commercial buildings: Energy and Buildings, 37(10), 1007-1016.
Arya, S. P., 2001, Introduction to Micrometeorology: Academic Press.
Besir, A. B., andCuce, E., 2018, Green roofs and facades: A comprehensive review: Renewable and Sustainable Energy Reviews, 82, 915–939.
Bidokhti, A. A., Shariepour, Z., et al., 2016, Some resilient aspects of urban areas to air pollution and climate change, case study: Tehran, Iran: Scientia Iranica,Transaction A, Civil Engineering, 23(5).
Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J., 2015, The mechanisms of reactions influencing atmospheric ozone: Oxford University Press.
Chen, F., and Dudhia, J., 2001, Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation: Monthly Weather Review, 129(4), 569–585.
Chou, M. D., and Suarez, M. J., 1994, An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models: NASA Technical Memorandum, No. 1046063.
Ekaterini, E., and Dimitris, A., 1998, The contribution of a planted roof to the thermal protection of buildings in Greece: Energy and Build, 27, 29-36.
Emmons, L. K., Walters, S., et al., 2010, Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4): Geoscientific Model Development, 3, 43–67.
Fallmann, J., Forkel, R., et al., 2016, Secondary effects of urban heat island mitigation measures on air quality: Atmospheric Environment, 125, 199–211.
Georgescu, M., Morefield, P. E., et al., 2014, Urban adaptation can roll back warming of emerging megapolitan regions: Proceedings of the National Academy of Sciences, 111(8), 2909–2914.
Grell, G. A., Dudhia, J., et al., 1994, A description of the fifth-generation Penn State/NCAR mesoscale model (MM5): NCAR Tech. Note NCAR TN-398-1-STR.
Grell, G. A., Peckham, S. E., et al., 2005, Fully coupled online chemistry within the WRF model: Atmospheric Environment, 39, 6957-6975.
Guenther, A., Karl, T., et al., 2006, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature): Atmospheric Chemistry and Physics, 6(11): 3181−3210.
Henderson, B. H., Pinder, R. W., et al., 2011, Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere: Atmospheric Chemistry and Physics, 11, 275–291.
Hong, S. Y., Yign, N., and Jimy, D., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes: Monthly Weather Review, 134: 2318–2341.
Imran, H. M., Kala, J., et al., 2018, Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia: Journal of Cleaner Production: 197, 393–405.
Jandaghian, Z., and Akbari, H., 2018, The effect of increasing surface albedo on urban climate and air quality: A detailed study for Sacramento, Houston, and Chicago: Climate, 6.
Kain, S., 2004, The Kain–Fritsch convective parameterization: An update: Journal of Applied Meteorology, 43(1), 170-181.
Kolokotsa, D., Santamouris, M., et al., 2013, Green and cool roofs’ urban heat island mitigation potential in European climates for office buildings under free floating conditions: Solar Energy, 95, 118-130.
Krishnan, P., and Kunhikrishnan, P. K., 2004, Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler: Current Science, 86(3), 447-451.
Kusaka, H., and Kimura, F., 2004, Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case: Journal of the Meteorological Society of Japan, 82, 67–80.
Kusaka, H., Kondo, H., et al., 2001, A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models: Boundary Layer Meteorology, 101, 329–358.
Li, D., Bou-Zeid, E., et al., 2014, The effectiveness of cool and green roofs as urban heat island mitigation strategies: Environmental Research Letters, 9(5).
Madronich, S., 1987, Photo dissociation in the atmosphere: 1.Actinic flux and the effect of ground reflections and clouds: Journal of Geophysical Research, 92, 9740–9752.
Magill, J. D., Midden, K., et al., 2011, A history and definition of green roof technology with recommendations for future research: Southern Illinois University Carbondale, available at: <http://opensiuc.lib.siu.edu/ gs_rp/9>, Research Papers paper 91.
Malakooti, H., and Bidokhti, A., 2014, A modeling study of boundary layer wind flow over Tehran region during a high pollution episode: Journal of Applied Fluid Mechanics, 7(2), 299-313.
Mlawer, E. J., Taubman, S. J., et al., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave: Journal of Geophysical Research, 102, 0148-0227.
Morrison, H., Thompson, G., and Tatarskii, V., 2009, Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes: Monthly Weather Review, 137, 991–1007.
Salamanca, F., and Martilli, A., 2010, A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations: Theoretical and Applied Climatology, 99(3-4), 345-356.
Sarwar, G., Luecken, D., et al., 2008, Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: preliminary assessment: Journal of Applied Meteorology and Climatology, 47(1), 3-14.
Shafiquea, M., Kim, R., et al., 2018, Green roof benefits, opportunities and challenges – A review: Renewable and Sustainable Energy Reviews, 90, 757–773.
 
Shahbazi, H., Reyhanian, M., et al., 2016a, The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach: Emission Control Science and Technology, 2(1), 44-56.
Shahbazi, H., Taghvaee, S., et al., 2016b, A GIS based emission inventory development for Tehran: Urban Climate, 17, 216–229.
Sharma, A., Conry, P., et al., 2016, Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model: Environmental Research Letters, 11(6).
Taha, H., 2008, Urban surface modification as a potential ozone air-quality improvement strategy in California: A mesoscale modeling study: Boundary Layer Meteorology, 127, 219–239.
Tian, Y., Bai, X., et al., 2017, Study on heat fluxes of green roofs based on an improved heat and mass transfer model: Energy and Buildings, 152, 175–184.
Vijayaraghavan, K., 2016, Green roofs: a critical review on the role of components, benefits, limitations and trends: Renewable and Sustainable Energy Reviews, 57, 740–752.
Yarwood, G., Rao, S., et al., 2005, Updates to the carbon bond chemical mechanism: CB05: Final report to the the U.S. EPA, RT-0400675, 246pp [available online at http://www.camx.com].
Zhang, N., Chen, Y., et al., 2017, Effectiveness of different urban heat island mitigation methods and their regional impacts: Journal of Hydrometeorology, 18, 2991–3012.