ارزیابی پویایی لرزه‌زمین‌ساختی در کمربند چین‌خورده و رانده زاگرس به کمک نسبت نرخ گشتاور لرزه‌ای به نرخ گشتاور ژئودتیک

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 استادیار گروه ژئوفیزیک، دانشکده علوم و فناوری نانو و زیستی، دانشگاه خلیج فارس، بوشهر، ایران

2 کارشناسی ارشد، دانشکده علوم و فناوری نانو و زیستی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

در این پژوهش با تلفیق بررسی­های ژئودتیک و لرزه‌ای در سامانه­های دگرریختی، تصویری بهتر از پهنه در حال تکامل کمربند چین‌خورده و رانده زاگرس ارائه شده است. در زاگرس بخشی از کل انرژی ناشی از همگرایی مایل صفحه عربی- اوراسیا در زمین‌لرزه­ها آزاد می­شود، بخشی به‌صورت انرژی پتانسیل در گسل­ها ذخیره و بخش دیگر نیز به‌صورت دگرشکلی­های داخلی و خزش مصرف می­شود. برآورد نرخ گشتاور روش نوینی است که به بررسی نرخ فعالیت زمین­ساختی در مناطق مختلف می­پردازد. نرخ گشتاور ژئودتیک بر اساس اطلاعات به‌دست­آمده از شبکه جی‌پی‌اس و نرخ گشتاور لرزه‌ای بر اساس زمین‌لرزه­های تاریخی و دستگاهی برآورد شده است. بیشترین نرخ گشتاور محاسبه­شده در کل زاگرس، نرخ گشتاور ژئودتیک است که تقریباً معادل Nm/yr 1019 × 441/7 است. نرخ گشتاور لرزه‌ای زاگرس در حدود Nm/yr 1018 × 438/3 تخمین زده شده است. نسبت نرخ گشتاور لرزه‌ای به گشتاور ژئودتیک در کل منطقه زاگرس معادل 0429/0 است که نشان می­دهد تغییر شکل بی‌لرزه در کل منطقه زاگرس غالب است و نقش بیشتری نسبت به تغییر شکل لرزه‌ای دارد. این موضوع احتمالاً مربوط به تأثیر لایه­های شکل­پذیر زیرین هرمز و سایر سطوح جدایش میانی است. با مقایسه نرخ گشتاورهای لرزه‌ای و ژئودتیک در بخش­های مختلف زاگرس و با توجه به آزاد شدن مقدار بیشتر انرژی لرزه‎ای در شمال و شمال باختر، به نظر می­رسد خطرناک­ترین بخش پهنه زاگرس از لحاظ پتانسیل لرزه‌خیزی، جنوب و جنوب خاور ‎یعنی بخش­هایی از فارس و بندرعباس و بخش­هایی از زیرپهنه خوزستان باشد. مقایسه نتایج هر روش با روش­های دیگر، می­تواند دیدگاهی نو در پهنه دگرشکلی در حال تکامل لرزه­زمین‌ساخت زاگرس ایجاد کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of tectonic activity effect in the Zagros fold and thrust belt by seismic/geodetic moment rate ratio

نویسندگان [English]

  • saeed zarei 1
  • Sedigheh Mehdipour 2
  • Seyyed Reza mansouri 1
1 Assistant Professor, Department of Geophysics, faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
2 Master of Science, Department of Geophysics, faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
چکیده [English]

In this study, an improved picture of the ongoing crustal deformation field for the Zagros as an evolving foreland fold and thrust belt is presented by using an extensive combination of geodetic and seismic analysis. The significant amount of oblique Arabia–Eurasia convergence is currently absorbed within the Zagros. Part of the total available energy is used in seismic deformations and part of it is stored in faults as potential energy. The remaining energy is consumed by the creeps and aseismic processes.
Estimation of moment rate is comparatively reckoned as a new method for investigation of tectonic activities rate in different regions. In this research, geodetic moment rate (based on the GPS data) and seismic moment rate (based on the historical and instrumental earthquake data) are estimated for Zagros block in S-SW of Iran. Each approach has its own limitations. In all parts of the Zagros belt, the maximum estimated moment rate belongs to geodetic moment rate which is almost equal to 7.441×1019 Nm/yr. The seismic moment rate in Zagros belt is almost equal to 3.438×1018 Nm/yr.
In this study, different parts of the Zagros Mountain range are investigated using three methods (structural, tectonosedimentary and 1°×1° grid) and the results are compared and analyzed. The seismic moment rate of simply-folded belt, high Zagros and Khuzestan plain are 1.56 × 1018 Nm/yr, 1.45 × 1018 Nm/yr and 6.24 × 1016 Nm/yr, respectively. It means that the maximum (minimum) released energy belongs to simply-folded belt (Khuzestan plain). In Izeh, Central Lorestan, interior Fars and Bandar Abbas hinterland sub-zones, the maximum amount of energy has been released during the earthquakes. The ratio of the seismic moment rate to geodetic moment rate is near 0 (0.0429) which indicates that the aseismic processes dominate the deformation, or stress accumulation is underway which can increase the level of the seismic hazard. Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Series that prevents the occurrence of very large aseismic motion. According to the values of geodetic moment rates in the Zagros sub-zones and based on the value of the released seismic energy in the north and northeast part of the study area, it seems that in the future, the most of the seismic potential energy and seismic hazard are in the southeastern part of Zagros belt in Fars and Bandar Abbas hinterland and a part of Khuzestan sub-zone. Our study has implications for better comprehending the current seismotectonic pattern of Zagros fold and thrust belt as an evolving deformation area.

کلیدواژه‌ها [English]

  • Moment rate
  • active faults
  • deformation
  • Zagros
  • seismotectonic
امبرسیز، ن. ن.، ملویل، چ. پ.،1983، تاریخ زمین‌لرزه­های ایران، ترجمه  ابوالحسن رده، 1370: انتشارات آگاه.
رشیدی، ا.، خطیب، م. م.، موسوی، س. م.، جمور، ی.،1396، برآورد جنبایی گسل­های فعال در جنوب و باختر بلوک لوت بر پایه نرخ گشتاورهای زمین‌شناسی، لرزه‌ای و ژئودتیک: فصلنامه علوم زمین، 104(26)، 211-222.
زارعی، س.، خطیب، م. م.، زارع، م.، موسوی، س. م.،1396، ارزیابی توان لرزه‌خیزی پهنه لوت با مقایسه نرخ گشتاورهای ژئودتیک، لرزه‌ای و زمین‌شناسی: فصلنامه علوم و مهندسی زلزله، 7(1)، 15-36.
میرزائی، ن.، قیطانچی، م.،  ناصریه، س.، رئیسی، م.، ظریفی، ز.، طبائی.، س. ق.،1381، پارامترهای مبنایی زمین‌لرزه­های ایران: مؤسسه ژئوفیزیک دانشگاه تهران.
میرزائی، ن.،1383، ایالت­های لرزه­زمین‌ساختی ایران: سمینار آموزشی مبانی لرزه زمین‌ساخت و تحلیل خطر نسبی زمین‌لرزه، ص 20.
Aki, K., 1966, Generation and propagation of G-waves from the Noogata earthquake of June 17, 1964, part 2. Estimation of earthquake moment released energy, and stress-strain drop from G-wave spectrum: Bulletin of the Earthquake Research Institute, 44.
Anderson, J. G., 1979, Estimating the seismicity from geological structure for seismic-risk studies: Bulletin of the Seismological Society of America, 69(1), 135-158.
Ansari, S., and Zamani, A., 2014, Short-term seismic crustal deformation of Iran: Annals of Geophysics, 57(2), 0210, doi:10.4401/ag-6413.
Berberian, M., and King, G. C. P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, 18(2), 210-265.
Berberian, M., 1995, Thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics: Tectonophysics, 241(3-4), 193-224.
Ekström, G. A., 1987, A broad band method of earthquake analysis: PhD diss., Harvard University.
Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., and Priestley, K., 2006, Relocation and assessment of seismicity in the Iran region: Geophysical Journal International, 167, 761–778.
Hanks, T. C., and Kanamori, H., 1979, A moment magnitude scale: Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350.
 
Hessami, K., Nilforoushan, F., and Talbot, C. J., 2006, Active deformation within the Zagros Mountains deduced from GPS measurements: Journal of the Geological Society, 163(1), 143-148.
Johnston, A. C., 1996, Seismic moment assessment of earthquakes in stable continental regions—III. New Madrid 1811–1812, Charleston 1886 and Lisbon 1755: Geophysical Journal International, 126(2), 314-344.
Kanamori, H., 1977, Seismic and aseismic slip along subduction zones and their tectonic implications: Maurice Ewing Ser, 1, 163-174.
Khorrami, F., Vernant, P., Masson, F., ... , and Alijanzadeh, M., 2019, An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities: Geophysical Journal International, 217(2), 832-843.
Kostrov, V. V. ,1974, Seismic moment and energy of earthquakes, and seismic flow of rock: Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl. 1: 23-40.
Kreemer, C., Chamot-Rooke, N., and Pichon, X., 2004, Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data: Earth and Planetary Science Letters, 225(3-4), 329-346.
Middleton, T. A., Parsons, B., and Walker, R. T., 2018, Comparison of seismic and geodetic strain rates at the margins of the Ordos Plateau, Northern China: Geophysical Journal International, 212(2), 988-1009.
Newman, A. V., Dixon, T. H., Ofoegbu, G. I., and Dixon, J. E., 2001, Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology: Journal of Volcanology and Geothermal Research, 105(3), 183-206.
Nissen, E., Tatar, M., Jackson, J. A., and Allen, M. B., 2011, New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran: Geophysical Journal International, 186(3), 928-944.
Pan, Z., Yun, Z., and Shao, Z., 2020, Contemporary crustal deformation of Northeast Tibet from geodetic investigations and a comparison between the seismic and geodetic moment release rates: Physics of the Earth and Planetary Interiors, 106489.
Pancha, A., Anderson, J. G., and Kreemer, C., 2006, Comparison of seismic and geodetic scalar moment rates across the Basin and Range Province: Bulletin of the Seismological Society of America, 96(1), 11-32.
Savage, J. C., and Simpson, R. W., 1997, Surface strain accumulation and the seismic moment tensor: Bulletin of the Seismological Society of America, 87(5), 1345-1353.
Snyder, D. B., and Barazangi, M., 1986, Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations: Tectonics, 5(3), 361-373.
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., and Kowada, A., 1999, Characterizing crustal earthquake slip models for the prediction of strong ground motion: Seismological Research Letters, 70(1), 59-80.
Takin, M., 1972, Iranian geology and continental drift in the Middle East: Nature, 235(5334), 147-150.
Talebian, M., and Jackson, J., 2004, A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran: Geophysical Journal International, 156(3), 506-526.
Tatar, M., Hatzfeld, D., Martinod, J., Walperzdorf, A., Ghafori-Ashtiany, M., and Chéry, J., 2002, The present-day deformation of the central Zagros from GPS measurements: Geophysical Research Letters, 29, doi: 10.1029/2002GL015427.
Ward, S. N., 1998, On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: The United States: Geophysical Journal International, 134(1), 172-186.
Zarifi, Z., Nilfouroushan, F., and Raeesi, M., 2014, Crustal stress map of Iran: insight from seismic and geodetic computations: Pure and Applied Geophysics, 171(7), 1219-1236.