تأثیر محتوای فرکانسی زلزله بر پایداری خاکریزهای مسلح‌شده با ژئوسل

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 دانش آموخته کارشناسی ارشد مهندسی ژئوتکنیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

امروزه زلزله‌های متعددی در اغلب نقاط جهان روی می­دهد که از نظر شدت، مدت، انرژی و دیگر مشخصات لرزه‌ای بسیار متفاوت هستند؛ لذا مقدار و میزان خسارات وارد­شده بر سازه‌‌های مختلف نیز تحت تأثیر مشخصات زلزله قرار دارد. در این راستا، تأثیر محتوای فرکانسی زلزله بر رفتار و پاسخ دیوارهای خاک مسلح نیز اهمیت دارد. در پژوهش حاضر، با شبیه­سازی عددی خاک مسلح­شده با ژئوسل با استفاده از مدل‎سازی دوبعدی در نرم‌افزار تفاضل محدود Flac-2D و تحلیل لرزه‌ای تاریخچه زمانی زلزله به روش دینامیکی غیرخطی، ضمن بررسی تأثیر محتوای فرکانسی زلزله بر رفتار و پاسخ لرزه‌ای خاک مسلح، نقش عوامل مختلف مانند هندسه خاکریز و مشخصات مسلح­کننده نیز مطالعه شده است. نتایج این پژوهش نشان می‌دهد با افزایش ارتفاع و وزن خاکریز، جابه‌جایی لرزه‌ای افزایش می­یابد. مقدار این جابه‌جایی در زلزله‌های مختلف از نظر محتوای فرکانسی متفاوت است. همچنین با افزایش طول و تعداد لایه‌های مسلح­کننده، جابه‌جایی لرزه‌ای کاهش می‌یابد که این بهبود رفتار در زلزله­های مختلف به محتوای فرکانسی نیز وابسته است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Earthquake Frequency Content on the Stability of Geocell-Reinforced Soils

نویسندگان [English]

  • Saeed Ghaffarpour Jahromi 1
  • Mina MohseniNejad 2
1 Associate Professor, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Graduated of Geotechnical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

Today, many earthquakes occur in most parts of the world that are very different in terms of intensity, duration, energy and other seismic characteristics, so the amount and extent of damage to different structures are also affected by the characteristics of the earthquake. In this regard, the study of the effects of earthquake frequency content on the behavior and response of reinforced soil walls is also important.
In this research, using numerical simulation with two-dimensional modeling of geocell-reinforced soil in Flac-2D finite difference software and seismic analysis with nonlinear dynamic time history of earthquake, the effect of earthquake frequency content on the behavior and seismic response of reinforced soil and also the role of various factors such as embankment geometry and reinforcement characteristics were investigated. The most important results can be summarized as follows:

In seismic conditions, lateral displacement is significant compared to vertical displacement and its maximum value is above the wall.
By increasing the frequency range of the earthquake around the natural frequency range of the structure, the strain energy in the embankment increases and the reliability and stability decrease consequently.
By increasing the frequency range and strain energy, the amount of unbalanced internal forces of the embankment is increased. It creates a large deformation and displacement during the earthquake by creating a cumulative plastic strain and will lead to rupture and instability of the embankment.
With increasing altitude and subsequent geometric dimensions of the embankment, the weight of the mass increases and the seismic acceleration leads to large and permanent displacement during the earthquake, which is a significant increase in earthquakes with wide frequency content (around the natural frequency range of the structure).
As the length of the reinforcement increases, the displacement of the embankment during the earthquake decreases due to the increase in internal capacity. It is a tangible improvement in earthquake behavior with wide frequency content. The minimum length of the reinforcement in proportion to the height of the embankment and the frequency range of the earthquake is recommended.
As the geocell height and reinforcement thickness increase, the axial and flexural stiffness increase and the embankment displacement during the earthquake decreases in proportion to this. It improves the behavior in proportion to the frequency content of the earthquake. The proposed height and thickness of the geocell is proportional to the frequency content of the earthquake and to the average dimension of soil particles (D50).
The effect of earthquake frequency content on embankment behavior depends on the natural frequency of the embankment, in which various factors such as embankment geometry, arrangement and reinforcement geometry, as well as the physical and mechanical characteristics of the embankment are involved and cannot be easily calculated.

 

کلیدواژه‌ها [English]

  • Reinforced soil
  • earthquake
  • geocell
  • frequency content
  • stability
  • seismic displacement
Abdelouhab, A., Dias, D., and Freitag, N., 2011, Numerical analysis of the behaviour of mechanically stabilized earth walls reinforced with different types of strips: Geotextiles and Geomembranes, 29(2), 116-129.
Bathurst, R. J., and Cai, Z., 1995, Pseudo-static seismic analysis of geosynthetic-reinforced segmental retaining walls: Geosynthetics international, 2(5), 787-830.
Bathurst, R. J., 1997, Review of seismic design, analysis and performance of geosynthetic reinforced walls, slopes and embankments: Earth reinforcement, 887-918.
El-Emam, M. M., and Bathurst, R. J., 2005, Facing contribution to seismic response of reduced-scale reinforced soil walls: Geosynthetics International, 12(5), 215-238.
Elias, V., Christopher, R., and Barry, P. E., 1997, Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines: FHWA Demonstration Project 82, Reinforced Soil Structures WSEW [ie MSEW] and RSS, Federal Highway Administration.
Fakharian, K., and Attar, I. H., 2007, Static and seismic numerical modeling of geosynthetic-reinforced soil segmental bridge abutments: Geosynthetics International, 14(4), 228-243.
Hegde, A., and Sitharam, T. G., 2015, Joint strength and wall deformation characteristics of a single-cell geocell subjected to uniaxial compression: International Journal of Geomechanics, 15(5), 04014080.
Jones, C. J., 2013, Earth reinforcement and soil structures: Elsevier.
Leshchinsky, B., and Ling, H. I., 2013, Numerical modeling of behavior of railway ballasted structure with geocell confinement: Geotextiles and Geomembranes, 36, 33-43.
Madhavi Latha, G., & Rajagopal, K., 2007, Parametric finite element analyses of geocell-supported embankments: Canadian Geotechnical Journal, 44(8), 917-927.
Mehdipour, I., Ghazavi, M., and Moayed, R. Z., 2013, Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect: Geotextiles and Geomembranes, 37, 23-34.
Munjy, H., Tehrani, F. M., Xiao, M., and Zoghi, M., 2014, A numerical simulation on the dynamic response of MSE wall with LWA backfill: Proceeding Numerical Methods in Geotechnical Engineering, 1, 1147-1152.
Rahmouni, O., Mabrouki, A., Benmeddour, D., and Mellas, M., 2016, A numerical investigation into the behavior of geosynthetic-reinforced soil segmental retaining walls: International Journal of Geotechnical Engineering, 10(5), 435-444.
Sabermahani, M., Ghalandarzadeh, A., and Fakher, A., 2009, Experimental study on seismic deformation modes of reinforced-soil walls: Geotextiles and Geomembranes, 27(2), 121-136.
Segrestin, P., and Bastick, M. J., 1988, Seismic design of reinforced earth retaining walls-the contribution of finiteelements analysis: International geotechnical symposium on theory and practice of earth reinforcement, 577-582.
Shukla, S. K., 2017, An Introduction to Geosynthetic Engineering: CRC Press.
Song, F., Liu, H., Hu, H., and Xie, Y., 2018, Centrifuge tests of geocell-reinforced retaining walls at limit equilibrium: Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 04018005.
Song, F., and Tian, Y., 2019, Three-dimensional numerical modelling of geocell reinforced soils and its practical application:
 
Geomechanics and Engineering, 17(1), 1-9.
Venkateswarlu, H., and Hegde, A., 2020, Effect of influencing parameters on the vibration isolation efficacy of geocell reinforced soil beds: International Journal of Geosynthetics and Ground Engineering, 6, 1-17.
Vibhoosha, M. P., Bhasi, A., and Nayak, S., 2021, A review on the design, applications and numerical modeling of geocell reinforced soil: Geotechnical and Geological Engineering, 1-23.
Yogendrakumar, M., Bathurst, R. J., and Finn, W. L., 1991, Response of reinforced soil slopes to earthquake loadings: Proceedings of the 6th Canadian Conference on Earthquake Engineering, 445-452.
Yoo, C., and Kim, S. B., 2008, Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: full-scale load test and 3D finite element analysis: Geotextiles and Geomembranes, 26(6), 460-472.
Yu, Y., Damians, I. P., and Bathurst, R. J., 2015, Influence of choice of FLAC and PLAXIS interface models on reinforced soil–structure interactions: Computers and Geotechnics, 65, 164-174.