برآورد احتمالاتی خطر زمین‌لرزه برای 8 شهر پرجمعیت ایران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه اردکان، اردکان، ایران

2 شرکت مشاور ژئوفیزیک ماهان، بریتیش کلمبیا، کانادا

چکیده

در این مقاله، برای هشت شهر اهواز، اصفهان، کرج، مشهد، قم، شیراز، تبریز و تهران با جمعیت بیش از یک‌میلیون نفر، برآورد احتمالاتی خطر زمین‌لرزه انجام شده است. ابتدا با بهره‌گیری از برنامه رایانه‌ای در محیط نرم‌افزار متلب تدوین شده و استفاده از کاتالوگ زمین‌لرزه‌های تاریخی و دستگاهی تا انتهای سال 2018 در شعاع 300 کیلومتری هریک از شهرها، پارامترهای لرزه‌خیزی مربوط به هرکدام تعیین شده است. از درخت منطقی برای استفاده از 5 رابطه تضعیف جهانی و منطقه‌ای بور و همکاران (2014)، ادریس (2014)، کیل و همکاران (2015) و فرج‌پور و همکاران (2019) با وزن برابر استفاده شده و منحنی‌های خطر برای بیشینه شتاب جنبش زمین و شتاب در پریودهای 1/0، 2/0 و 1 ثانیه و شتاب طیفی هموار خطر زمین‌لرزه بر روی سنگ‌بستر (با سرعت موج برشی 760 متر بر ثانیه) در دوره‌‌های بازگشت 50 و 475 و 2475 سال برای هر شهر به‌دست آمده است. نتایج به‌دست‌آمده نشان می‌دهد که بیشترین خطر مربوط به شهرهای شیراز و تبریز و کمترین خطر مربوط به شهر اصفهان است. بیشینه شتاب جنبش زمین در دوره‌‌های بازگشت 50 و 475 سال برای هردو شهر به‌ترتیب، cm/s2 77 و cm/s2 203 و در دوره بازگشت 2475 سال برای شهر تبریز برابر cm/s2 535 برآورد شده و بیشینه شتاب جنبش زمین برای شهر اصفهان در شرایط ساختگاهی سنگ‌بستر برای دوره‌‌های بازگشت 50، 475 و 2475 سال به‌ترتیب cm/s2 29، cm/s2 77 و cm/s2 125 برآورد شده است. نتایج این مطالعه با نتایج کارهای سلحشور و همکاران (2018)، شهبازی و منصوری (2019) و موسوی‌بفروئی و همکاران (1393) مقایسه شده است. از مقایسه این نتایج به‌نظر می‌رسد راهکار مورد استفاده در برآورد خطر، بیشترین تأثیر را در مقادیر شتاب برآورد شده دارد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic seismic hazard assessment for 8 densely-populated cities of Iran

نویسندگان [English]

  • Seyed Hasan Mousavi-Bafrouei 1
  • Alireza Babaei Mahani 2
1 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
2 Mahan Geophysical Consulting Inc., Columbia, Canada
چکیده [English]

In this study, we used the recent comprehensive earthquake catalogue of Mousavi-Bafrouei and Babaie Mahani (2020), including historical and instrumental earthquakes until the end of 2018, to calculate Probabilistic Seismic Hazard Assessment (PSHA) at eight metropolitans with a population of more than 1 million. These metropolitans include Ahvaz, Isfahan, Karaj, Mashhad, Qom, Shiraz, Tabriz, and Tehran. Our approach was implemented using a MATLAB code that was compiled for the purpose of this study. The historical seismicity within a 300-km radius was considered around each city, and the seismicity parameters were obtained in each case. We provided the hazard curve and uniform hazard spectrum for peak ground acceleration (PGA) and pseudo-response spectral acceleration (PSA) at periods of 0.04, 0.1, 0.2, 0.3, 1.0, and 3.0 sec for the return periods of 50, 475, and 2475 years, respectively. For hazard calculations, we used four ground motion prediction equations with equal weights; Boor et al. (2014), Idriss (2014), Kale et al. (2015), and Farajpour et al. (2019). Our PSHA results show that the highest hazard occurs in the cities of Shiraz and Tabriz, whereas the lowest hazard level happens in the city of Isfahan. Specifically, the largest PGA values at the bedrock ( = 760 m/sec) condition and for the return periods of 50, 475, and 2475 years are 77 cm/sec2 (Shiraz and Tabriz), 203 cm/sec2 (Shiraz and Tabriz), and 535 cm/sec2 (Tabriz), respectively. On the other hand, the smallest PGA values for the same return periods occur for the city of Isfahan at 29 cm/sec2, 77 cm/sec2, and 125 cm/sec2. We also compared our results with other PSHA studies obtained by other researchers, including Mousavi Befrouei et al. (2014), Salahshour et al. (2018), and Shahbazi and Mansouri (2019). In general, we found that our results show lower values in terms of ground motion amplitudes. For example, Mousavi-Bafrouei et al. (1393) obtained higher values by up to ~30% than those obtained in this study. This difference is probably due to the inclusion of different datasets for source characterization and calculation of seismicity parameters. In the approach used in this study and the works of Salahshour et al. (2018) and Shahbazi and Mansouri (2019), historical seismicity is the only source of information for the determination of seismic sources and their parameters, which resulted in similar ground motion values. However, Mousavi Befroui et al. (2014) used geological, geophysical, and seismotectonic evidence along with historical seismicity for source characterization.

کلیدواژه‌ها [English]

  • Seismic hazard assessment
  • strong ground motion
  • seismicity
  • Iran
مرکز آمار ایران، 1397، سالنامه آماری ایران – 1395: انتشارات دفتر ریاست، روابط عمومی و همکاری های بین الملل، تهران، 935ص.
موسوی‌بفروئی، س. ح.، میرزائی، ن.، شعبانی، ا.، و اسکندری قادی، م.، 1393، پهنه‌بندی خطر زمینلرزه در ایران و برآورد مقادیر بیشینه شتاب برای مراکز استانها: مجلة فیزیک زمین و فضا، 40(4)، 15-38.
میرزائی، ن.، قیطانچی، م. ر.، ناصریه، س.، رئیسی، م.، ظریفی، ز. و طبائی، ق.، 1381. پارامترهای مبنایی زمین‌لرزه‌های ایران: تهران، انتشارات دانش‌نگار، 184 ص.
Ambraseys, N. N., and Melville, C. P., 1982, A history of Persian earthquakes: Cambridge University Press, Cambridge, 240 pages.
Assatourians, K., and Atkinson, G. M., 2013, EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach: Seismological Research Letters 84, 516-524.
Babaie Mahani, A., and Kazemian, J., 2018, Strong ground motion from the November 12, 2017, M 7.3 Kermanshah earthquake in western Iran: Journal of Seismology 22, 1339-1358.
Baker, J. W., 2013, Introduction to probabilistic seismic hazard analysis. White Paper Version 2.0.1, 79 pages.
Beauval, C., Scotti, O., and Bonilla, F., 2006, The role of seismicity models in probabilistic seismic hazard estimation: comparison of a zoning and a smoothing approach: Geophysical Journal International, 165, 2, 584–595. https://doi.org/10.1111/j.1365-246X.2006.02945.x
Bender, B., and Perkins, D. M., 1987, SEISRISK III-a computer program for seismic hazard estimation: Bulletin 1772, United States Geological Survey, Department of Interior, USA.
Berberian, M., and Mohajer-Ashjai, A., 1977, Seismic risk map of Iran, a proposal, contribution to the seismotectonics of Iran, Part III: Geological Survey of Iran 40, 121-150.
Berberian, M., and King, G. C. P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences 18, 210-265.
Berberian, M., Qorashi, M., Jackson, J. A., Priestley, K., and Wallace, T., 1992, The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance: Bulletin of Seismological Society of America 82, 1726-1755.
Berberian, M., 2005, The 2003 Bam urban earthquake: a predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran: Earthquake Spectra 21, S35-S99.
Berberian, M., 2014, Earthquakes and coseismic surface faulting on the Iranian plateau: a historical, social, and physical approach: Elsevier, first edition, 776 pages.
Boore, D. M., Stewart, J. P., Seyhan, E., and Atkinson, G. M., 2014, NGAWest2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes: Earthquake Spectra 30, 1057-1085.
Bozorgnia, Y., and Mohajer-Ashjai, A., 1982, Seismic risk investigation of major cities of Iran: Journal of the Earth and Space Physics 11, 15-38.
Bozorgnia, Y., Abrahamson, N. A., Al Atik, L., Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore, D. M., Campbell, K. W., Chiou, B. S. J., Darragh, R., Day, S., Donahue, J., Graves, R. W., Gregor, N., Hanks, T., Idriss, I. M., Kamai, R., Kishida, T., Kottke, A., Mahin, S. A., Rezaeian, S., Rowshandel, B., Seyhan, E., Shahi, S., Shantz, T., Silva, W., Spudich, P., Stewart, K. P., Watson-Lamprey, J., Wooddell, K., and Youngs, R., 2014, NGA-West2 Research Project: Earthquake Spectra 30, 973-987.
Byrne, D. E., Sykes, L. R., and Davis, D. M., 1992, Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone: J. Geophys. Res. 97, 449-478.
Castaños, H., and Lomnitz, C., 2002, PSHA: is it science?: Engineering Geology 66, 315-317.
Cornell, C. A., 1968, Engineering seismic risk analysis: Bulletin of Seismological Society of America: 58, 1583-1606.
Farajpour, Z., Zare, M., Pezeshk, S., Ansari, A., and Farzanegan, E., 2018, Near-source strong motion database catalog of Iran: Arab. J. Geosci. 11, article 80, https://doi.org/10.1007/s12517-018-3413-x
Farajpour, Z., Pezeshk, S., and Zare, M., 2019, A new empirical ground-motion model for Iran: Bulletin of Seismological Society of America 109, 732-744.
Frankel, A., 1995, Mapping seismic hazard in the central and eastern United States: Seismological Research Letters 66, 8-21.
Ghodrati Amiri, G., Motamed, R., and Rabet Es-haghi, H., 2003, Seismic hazard assessment of metropolitan Tehran, Iran: Journal of Earthquake Engineering 7, 347-372.
Green, A. R., and Hall, W. J., 1994, An overview of selected seismic hazard analysis methodologies. A report on a research project, Department of Civil Engineering, University of Illinois at Urbana-Champaign, USA.
Gutenberg, B., and Richter, C. F., 1942, Earthquake magnitude, intensity, energy, and acceleration: Bulletin of Seismological Society of America 32, 163-191.
Gutenberg, B., and Richter, C. F., 1944, Frequency of earthquakes in California: Bulletin of Seismological Society of America 34, 185-188.
Gutenberg, B., and Richter, C. F., 1956, Earthquake magnitude, intensity, energy, and acceleration (second paper): Bulletin of Seismological Society of America 46, 105-145.
Hajibabaee, M., Amini-Hosseini, K., and Ghayamghamian, M. R., 2013, A new method for assessing the seismic risk of urban fabrics in Iran: Journal of the Earth and Space Physics 15, 47-68.
Hatzfeld, D., Tatar, M., Priestley, K., and Ghafory-Ashtyany, M., 2003, Seismological constraints on the crustal structure beneath the Zagros mountain belt (Iran): Geophys. J. Int. 155, 403-410.
Hessami, K., Jamali, F., and Tabassi, H., 2003, Major active faults of Iran: International Institute of Earthquake Engineering and Seismology, Tehran, Iran.
Hosseini, H., Pakzad, M., and Naserieh, S., 2019, Iranian Regional Centroid Moment Tensor Catalog: Solutions for 2012-2017, Physics of the Earth and Planetary Interiors, 286, 29-41.
Idriss, I. M., 2014, An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes: Earthquake Spectra 30, 1155-1177.
Jackson, J. A., and McKenzie, D. P., 1988, The relationship between plate motions and seismic tensors, and the rates of active deformation in the Mediterranean and Middle East: Geophys. J. R. Astron. Soc. 93, 45-73.
Kale, O., Akkar, S., Ansari, A., and Hamzehloo, H., 2015, A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5%-damped response spectrum: investigation of possible regional effects: Bulletin of the Seismological Society of America 105(2A), 963-980.
Karimiparidari, S., Zare, M., Memarian, and H., Kijko, A., 2013, Iranian earthquakes, a uniform catalog with moment magnitudes: Journal of Seismology 17, 897-911.
Kijko, A., and Graham, G., 1999, ‘‘Parametric-historic’’ procedure for probabilistic seismic hazard analysis-Part II: assessment of seismic hazard at specified site: Pure and Applied Geophysics 154, 1-22.
Klügel, J. U., 2005, Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants: Engineering Geology 78, 285-307.
Kramer, S. L., 1996, Geotechnical earthquake engineering: Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, William J. Hall, Editor, New Jersey.
Kuwata, Y., Takada, S., and Bastami, M., 2005, Building damage and human causalities during the Bam-Iran earthquake: Asian Journal of Civil Engineering (Building and Housing) 6, 1-19.
Mahsuli, M., Rahimi, H., and Bakhshi, A., 2018, Probabilistic seismic hazard analysis of Iran using reliability methods: Bulletin of Earthquake Engineering 17, 1117-1143.
McGuire, R. K., 1978, FRISK-a computer program for seismic risk analysis. Open-File Report 78-1007, United States Geological Survey, Department of Interior, USA
McGuire, R. K., 2004, Seismic hazard and risk analysis: Earthquake Engineering Research Institute (EERI), Oakland, 240 pages.
Mirzaei, N., Gao, M., and Chen, Y. T., 1998, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces: Journal of Earthquake Prediction Research 7, 465-495.
Moinfar, A. A., Naderzadeh, A., and Maleki, E. 2000, A new seismic hazard map for the implementation in the national physical planning of Iran. in: Balassanian S., Cisternas A.,
Mohajer-Ashjai, A. A., and Nowroozi, A. A., 1978, Observed and probable intensity zoning of Iran: Tectonophysics 49, 149-160.
Moradi, M., Delavar, M. R., and Moshiri, B., 2015, A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided OWA operator: a case study of Tehran, Iran: Annals of GIS 21, 209-222.
Mousavi-Bafrouei, S. H., Mirzaei, N., and Shabani, E., 2014, A declustered earthquake catalog for the Iranian plateau: Annals of Geophysics 57, S0653.
Mousavi-Bafrouei, S. H., and Babaie Mahani, A., 2020, A comprehensive earthquake catalogue for the Iranian Plateau (400 B.C. to December 31, 2018): Journal Seismology https://doi.org/10.1007/s10950-020-09923-6
Mulargia, F., Stark, P. B., and Geller, R. J., 2017, Why is probabilistic seismic hazard analysis (PSHA) still used?: Physics of the Earth and Planetary Interiors 264, 63-75.
Musson, R. M. W., Toro, G. R., Coppersmith, K. J., Bommer, J. J., Deichmann, N., Bungum, H., Cotton, F., Scherbaum, F., Slejko, D., and Abrahamson, N. A., 2005, Evaluating hazard results for Switzerland and how not to do it: a discussion of ‘‘Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants” by J.U. Klügel: Engineering Geology 82, 43-55.
Nowroozi, A. A., and Ahmadi, G., 1986, Analysis of earthquake risk in Iran based on seismotectonic provinces: Tectonophysics 122, 89-114.
Ordaz, M., Martinelli, F., D’Amico, V., and Meletti, C., 2013, CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment: Seismological Research Letters 84, 495-504.
Salahshoor, H., Lyubushin, A., Shabani, E., and Kazemian, J., 2018, Comparison of Bayesian estimates of peak ground acceleration (Amax) with PSHA in Iran. J Seismol 22, 1515–1527.
Scherbaum, F., Schmedes, J., and Cotton, F., 2004, On the conversion of source-to-site distance measures for extended earthquake source models: Bulletin of Seismological Society of America 94, 1053-1069.
Sesetyan, K., Danciu, L., Demircioğlu, M., Giardini, D., Erdik, M., Akkar, S., Gülen, L., Zare, M., Adamia, S., Ansari, A., Arakelyan, A., Askan, A., Avanesyan, M., Babayan, H., Chelidze, T., Durgaryan, R., Elias, A., Hamzehloo, H., Hessami, K., Kalafat, D., Kale, O., Karakhanyan, A., Asif Khan,  M.,  Mammadli, T., Al-Qaryouti, M., Sayab, S., Tsereteli, N., Utkucu, M., Varazanashvili, O., Waseem, M., Yalçın, H., and Yılmaz, M., T., 2018, The 2014 seismic hazard model of the Middle East: overview and results: Bulletin of Earthquake Engineering, 16, 3535-3566.                  
Shahbazi, P., and Mansouri, B., 2019, Grid source event-based seismic hazard assessments of Iran: Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-019-00292-w
Shahvar, M. P., Zare, M., and Castellaro, S., 2013, A unified seismic catalog for the Iranian Plateau (1900-2011): Seismological Research Letters 84, 233-249.
Shi, Z., Yan, J., and Gao, M., 1992, Research on the principle and methodology of seismic zonation: Acta Seismologica Sinica 5, 305-314.
Silva, V., Crowley, H., Pagani, M., Monelli, D., and Pinho, R., 2014, Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment: Natural Hazards 72, 1409-1427.
Stirling, M. W., 2014, The continued utility of probabilistic seismic-hazard assessment. in Earthquake Hazard, Risk and Disasters, Chapter 13, pages 359-376. Elsevier.
Tavakoli, B., and Ghafory-Ashtiany, M., 1999, Seismic hazard assessment of Iran: Annals of Geophysics 42, 1013-1021.
Tsang, H. H., and Chandler, A. M., 2006, Site-specific probabilistic seismic-hazard assessment: direct amplitude based approach: Bulletin of Seismological Society of America 96, 392-403.
Vernant, P., Nilforoushan, F., Chéry, J., Bayer, R., Djamour, Y., Masson, F., Nankali, F., Ritz, J.F., Sedighi, M., and Tavakoli, F. 2004, Deciphering oblique shortening of central Alborz in Iran using geodetic data: Earth and Planetary Science Letters 223, 177-185.
Wang, Z., 2007, Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States. in Stein, S., and Mazzotti, S., ed., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues: Geological Society of America Special Paper 425, 363-374.
Wells, D. L., and Coppersmith, K. J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement: Bulletin of Seismological Society of America 84, 974-1002.
Woo, G., 1996, Kernel estimation method for seismic hazard area source modeling: Bulletin of Seismological Society of America, 86, 2, 353–362.
Yazdani, A., and Kowsari, M., 2013, Bayesian estimation of seismic hazards in Iran: Scientia Iranica 20, 422-430.
Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M. B., Kalafat, D., Erdik, M., Giardini, D., Asif Khan, M., and Tsereteli, N., 2014, Recent developments of the Middle East catalog: Journal of Seismology 18, 749-772.
Zare, M., 2017, Seismic hazard zoning in Iran: A state-of-the-art on the studies during four decades: Journal of the Earth and Space Physics 19, 71-101.