کنون‌بینی آغازش همرفت با استفاده از داده‌های ماهواره‌ای

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری هواشناسی، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

پیش­بینی دقیق و به‌موقع پدیده‌های همرفتی به‌عنوان یک چالش در مراکز عملیاتی پیش­بینی وضع‌هوا محسوب می‌شود. با توجه به این‌که این پدیده‌ها در بیشتر موارد، به‌طور دقیق توسط مدل‌های عددی با پیکربندی مر‌سوم قابل پیش‌بینی نیستند، کنون‌بینی آنها با استفاده از داده‌های ماهواره‌ای از اهمیت شایانی برخوردار است. در این بین ماهواره‌های زمین‌ایستا به‌عنوان ابزار بسیار کارآمد برای شناسایی مناطق مستعد آغازش پدیده‌های همرفتی شناخته شده‌اند.
    در این مقاله تلاش شده است تا با استفاده از داده‌های ماهواره زمین‌ایستای Meteosat8، الگوریتمی ارائه شود تا مناطق مستعد آغازش همرفت از نظر زمان و محل تشکیل، شناسایی و در جهت تقویت و بهبود صدور هشدارهای بهنگام، به‌صورت خیلی کوتاه‌‌مدت پیش‌بینی شود. این‌کار با مطالعه بر روی رویدادهای همرفتی رخ داده در ساعات روز و شب فصل‌های بهار و تابستان سال 1397 در محدوده استان تهران انجام شده است. الگوریتم حاضر بر اساس انتخاب 22 میدان با استفاده از دمای درخشندگی باندهای فروسرخ، بازتاب باندهای مرئی و نزدیک به فروسرخ، همراه با تفاضل و روند تغییرات 15 و 30 دقیقه‌ای آنها انجام شده است. این میدان‌ها بیانگر آهنگ رشد، شدت فراهنج‌ها و ضخامت نوری ابرها همراه با ارتفاع، فاز و شعاع موثر قطرک‌های قله آنها هستند. نتایج نشان می‌دهد که با به‌کارگیری این الگوریتم، درصد احتمال تشخیص و درصد پیش‌بینی‌های صحیح به‌ترتیب برابر 62 و 79 درصد بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nowcasting of convection initiation using satellite data

نویسندگان [English]

  • Abolghasem Ghazanfari Lakeh 1
  • Sarmad Ghader 2
  • Majid Mazraeh Farahani 2
1 Ph.D. Student, Department of Physics Space, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Associate Professor, Department of Physics Space, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Convective storms are the most atmospheric hazards that can cause significant dangers to sectors such as agriculture, industry, aviation industry and urban and rural facilities in different parts of the world. These storms are often accompanied by thunderstorms, hails, floods or severe winds. Severe dust from some convective phenomena has also been identified as air and environmental pollutant. Therefore, studing their various aspects has provided the basis for many atmospheric studies in different parts of the world.
    Accurate and timely forecasting of convective storms is still challenging in operational weather forecasting centers. Given that conventionally configured numerical models did not accurately predict this phenomenon in most cases, their nowcasting using satellite data is of great importance. Meanwhile, geostationary satellites have been recognized as a useful tool for identifying areas with potential convection.
    In this paper, an attempt is made to provide an algorithm using the Meteosat8 data to identify areas prone to the convection initiation and to improve the issuance of timely warnings in a very short time. This work has been done by studying the convective events during the day and night hours of spring and summer of 1397 in Tehran province. The present algorithm is based on  selecting 22 fields using the brightness temperature of infrared channels, the reflectance of visible and near-infrared channels and the differences and their 15 and 30 minute trends. The preprocessing performed on the satellite data are radiometric and geometric corrections. To do this, after calculating the radiance of individual channels from the digital counts, the brightness temperature of the infrared and reflectance of the visible and near infrared channels are calculated. Also to calculate the trend of the fields between two time steps, a spatial low-pass filter using the box-averaging method has been used.
    Large-Scale atmospheric pattern analysis of the ten strongest dust convective storm events in Tehran in the last decade shows that in most of them, at least five days before the storm, a ridge of geopotential height at the 500 hPa level developed on the area. On the day of the storm, the passage of the geopotential trough and the cold front of the surface destroyed the atmospheric stability and released the energy necessary for the development of the cumulonimbus cloud and the occurrence of the storm. Finally results show that using this algorithm to nowcasting the convective initiation, the probability of detection and correct alarm rate are 62 and 79 percent, respectively.

کلیدواژه‌ها [English]

  • Nowcasting
  • convective dust storm
  • convection initiation
  • satellite data
  • probability of detection
Ackerman, S., 1996, Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm: Journal of the Atmospheric Sciences 53, 2803– 2812. 
Adler, R. and Fenn, D., 1979, Thunderstorm intensity as determined from satellite data: Journal of Applied Meteorology, 18, 502–517.
Burlando, M., Romanic D., Solari G., Hangan H. and Zhang S., 2017, Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012: Monthly Weather Review,  145, 3057-3527.
Ellrod, GP., 2004, Loss of the 12 μm “Split Window” band on GOESM: impacts on volcanic ash detection: Journal Of Volcanic Geothermal Research ,135(1–2): 91–103.
EUMETSAT, EUM/MSG/ICD/105, 2017, MSG Level 1.5 Image Data Format Description, v8 e-signed, D-64295 Darmstadt, Germany.
EUMETSAT, EUM/MET/TEN/12/0332, V4, 2012, Conversion From Radiances to Reflectances For SEVIRI Warm Channels. D-64295 Darmstadt, Germany.
Fujita, T. T., 1985, The downburst, microburst and macroburst. Satellite and Mesometeorology Research Paper 210, University of Chicago, 122 pp.
Kitzmiller, D. H. and McGovern, W. E., 1989, VAS retrievals as a source of information for convective weather forecasts: An objective assessment and comparison with other sources of upper-air observations. Monthly weather review, 117, 2095–2109.
Koenig, M., de and Coning, E., 2009, The MSG global instability indices product and its use as a nowcasting tool: Weather and Forecasting, 24, 272–285.
Kocsis, Z., Konig, M. and Mecikalski, J., 2012, Improvement Of Convective Initiation Product For Meteosat Satellites Using NWC SAF High Resolution Wind and Cloud Type Retrievals, Eumetsat Meteorological Cnference, Sopot, Poland.
Mahale, V. H. and Zhang, G., 2016, Characterization of the 14 June 2011 Norman, Oklahoma, Downburst through Dual-Polarization Radar Observations and Hydrometeor Classification: Journal of Applied Meteorology and  climatology, 3, 2635-2655.
Mecikalski, J. R. and Bedka, K. M., 2006, Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Monthly Weather Review, 134: 49–78.
Mecikalski, J. R., Bedka, K. M., Paech, S. J. and Litten, L. A., 2008, A statistical evaluation of GOES  cloud-top properties for nowcasting convective initiation: Monthly Weather Review, 136, 4899–4914.
Mecikalski, J. R., Mackenzie, W. M., Koenig, M. and Muller, S. A., 2010, Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part 1. Infrared fields: Journal of Applied Meteorology  and Climatology, 49, 521–534.
 
      Mecikalski, J. R., Williams, J., Jewett, C. P., Leroy, A. and Walker, J. A., 2015, Probabilistic 0–1-h Convective Initiation Nowcasts that Combine Geostationary Satellite Observations and Numerical Weather Prediction Model Data: Journal of Applied Meteorology and Climatology, 54, 1039-1059.
McBride, J. L. and Ebert, E. E., 2000, Verification of Quantitative Precipitation Forecasts from Operational Numerical Weather Prediction Models over Australia, Weather Forecasting, 15 . 103-121.
Mueller, J., Van de Berg, L., Gärtner, V., Hanson, C., Heinemann, T., Holmlund, K. and König, M., 2007, Change to The MSG Level 1.5 Image Product Radiance Definition, EUMETSAT, Am Kavalleriesand 31, 64295 Darmstadt, Germany.
Pandey, P., De Ridder, K., Gillotay, D. and Van Lipzig, N. P. M., 2012, Estimating Cloud Optical Thickness and Associated Surface UV Irradiance from SEVIRI by Implementing a Semi-Analytical Cloud Retrieval Algorithm, Atmospheric Chemistry Discuss, 12, 691-721.
Peppler, R. A., 1988, A review of static stability indices and related thermodynamic parameters. SWS Misc. Publ. 104, Illinois State Water Survey Division, Climate and Meteorology Section, 94 pp.
Purdom, J. F. W., 1976, Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior: Monthly Weather Review, 104, 1474–1483.
Purdom, J. F. W., 1982, Subjective interpretation of geostationary satellite data for nowcasting. In Nowcasting, Browning KA (ed.). Academic Press: St Louis, USA; 149–166.
Roberts, RD. and Rutledge, S., 2003, Nowcasting storm initiation and growth using GOES-8 and WSR-88D data: Weather and Forecasting 18, 562–584.
Rosenfeld, D., Woodley, WL., Lerner, A., Kelman, G. and Lindsey, DT., 2008, Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase: Journal of Geophysical Research, 113, D04208,DOI: 10.1029/2007JD008600.
Sand, W. R., Cooper W. A., Politovich, M. K. and Veal D. L., 1984, Icing conditions encountered by a research aircraft: Journal of climate and applied meteorology, 23, 1424-1440.
Senf, F., Dietzsch, F., Hunerbein,  A. and Deneke, H., 2015, Characterization of Initiation and Growth of  Selected Severe Convective Storms over Central Europe with MSG-SEVIRI: Journal of Applied  Meteorology and Climatology, 54, 207-224.
Setvak, M. and Doswell, CA.,1991, The AVHRR Channel 3 cloud top reflectivity of convective storms: Monthly Weather Review, 119, 841–847.
Setvak, M., Rabin, R. M., Doswell, C. A. and Levizzani, V., 2003, Satellite observations convective storm tops in the 1.6, 3.7 and 3.9 μm spectral bands: Atmospheric Research, 67–68, 607–627.
Sieglaff, M., Cronce M. and Feltz, F., 2010, Nowcasting Convective Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends: Journal of Applied Meteorology And Climatology, 50, 110-126.
Siewert, C., Koenig, M. and Mecikalaski, J., 2010, Application of Meteosat second Generation data towards improving the nowcasting of convective initiation. Meteorol: Appl., 17, 442-451.
Smiljanic, I., Bahoric, Z. and Strelec Mahovic, N., 2014, The Value of Satellite-derived Instability Indices in the Assessment of Pre-Convective Conditions. Croatian Meteorological Journal, 48/49, 19-36.
Wakimoto, R. M., 1985, Forecasting dry microburst activity over the high plains. Monthly Weather Review,113, 1131–1143, doi:10.1175/1520-0493(1985)113,1131:FDMAOT.2.0.CO;2.
World Meteorological Organization, 2019, Manual on Codes, International Codes, Volume I.1, Annex II to the WMO Technical Regulations, Part A – Alphanumeric Codes, WMO-No. 306.