ارزیابی دو روش پیش‌بینی تندی جست‌باد در ایران و پس‌پردازش نتایج با بهره‌گیری از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری، گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

4 دانشیار، پژوهشکده هواشناسی و علوم جو، تهران، ایران

چکیده

یکی از پدیده­های جوّی مرتبط با باد که می­تواند بر زندگی بشر و برخی صنایع ازجمله هوانوردی تأثیر مستقیم داشته باشد، جست­باد است. جست­باد، تغییرات شدید و بسیار کوتاه­مدت تندی باد نسبت به باد میانگین است و ازاین‌رو در هواشناسی کاربردی بسیار مهم است. هدف از این مطالعه، ارزیابی دو روش پیش­بینی تندی جست­باد با استفاده از برونداد مدل WRF و پس­پردازش نتایج با بهره­گیری از شبکه عصبی مصنوعی در ایران است. برای این منظور 1880 مورد اطلاعات جست­باد غیرهمرفتی از 32 ایستگاه همدیدی بین سال­های 2013 تا 2018 بررسی شد. در بخش اول، رابطه استفاده­شده در سامانه پس­پردازش یکپارچه مدل WRF (روش WPD) و رابطه استفاده­شده در اداره هواشناسی انگلستان (روش MOA)، جهت پیش­بینی تندی جست­باد غیرهمرفتی ارزیابی شدند. نتایج حاکی از عملکرد بهتر روش WPD (89/3RMSE=، 07/3MAE=، 2/15MSE= و 66/0R=) در مقایسه با روش MOA (37/4RMSE=، 43/3MAE=، 1/19MSE= و 55/0R=) بود.
    در بخش دوم، چندین ساختار شبکه عصبی مصنوعی برای پس­پردازش نتایج هر دو روش، مطالعه و ارزیابی شد. شبکه عصبی مصنوعی یکی از الگوریتم­های هوش مصنوعی است که با الگوبرداری از گذشته و تطبیق پیش­بینی­های حاصل از برونداد مدل و دیده‌بانی­ها، می­تواند خطای مدل را کاهش دهد. بررسی­ها نشان داد بهره­گیری از شبکه عصبی پرسپترون چندلایه با ساختار هیبریدی با پنج لایه ورودی شامل پارامترهای تندی باد میانگین، فشار سطح دریا، دما، رطوبت نسبی و تندی جست­باد محاسبه­شده از روابط WPD یا MOA، یک لایه مخفی با نُه نرون و تابع فعال­سازی سیگموئید، یک لایه خروجی با تابع فعال­سازی خطی و بهره­گیری از الگوریتم یادگیری لونبرگ- مارکورات، می­تواند تا حدی پذیرفتنی خطای پیش‌بینی حاصل از روابط یاد­شده را کاهش دهد. مقادیر سنجه­های RMSE، MAE، MSE و R برای شبکه عصبی بهینه WPD9-LM به­ترتیب برابر با 50/2، 6/1، 21/4 و 83/0 به‌دست­آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of two methods of forecasting wind gust speed in Iran and post-processing of results using artificial neural network

نویسندگان [English]

  • Mohammad Hesam Mohammadi 1
  • Amir Hussain Meshkatee 2
  • Sarmad Ghader 3
  • Majid Azadi 4
1 Ph.D. Candidate, Department of Earth Sciences, Science and Research branch, Islamic Azad University, Tehran, Iran
2 Associate Professor, Department of Earth Sciences, Science and Research branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
4 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

Atmospheric currents, known as winds, are among the most important fields of study in different disciplines of science. One of the most important characteristics of wind is gustiness. Wind gust, among many other characteristics of the wind field, is studied extensively due to severe impacts that it may have on many aspects of human socio-economic activities. There are several models to predict wind gust speed. The results of these models always contain random and systematic errors that reduce the accuracy of predictions due to the lack of topographic resolution as well as the deficiencies of different physical schemes in the models. Consequently, post-processing is the most important process in the course of simulation and prediction using different types of models. Artificial neural network is one of the available tools that may be used to reduce errors of models by matching their outputs and observations.
    The aim of this study was to evaluate the performance of two models and artificial neural network in forecasting wind gust in Iran. First, a study was designed to examine two methods of the non-convective wind gusts forecasting, i.e., the UK Meteorological Office (MOA) and WRF post-process diagnostic of wind gusts (WPD) performances. To investigate the performace of two methods, 1880 cases of non-convective wind gust observations of 32 synoptic stations in Iran, between 2013 and 2018, were studied. Four RMSE, MAE, MSE and R were used to measure the performace of those two methods. The results for WPD and MOA were 3.89, 3.07, 15.2, 0.66 and 4.37, 3.43, 19.1, 0.55, respectively. The results showed that the WPD method performed better than the MOA method. To post-process the wind gust forecasts with an artificial neural network, a feedforward multilayer perceptron with the back-propagation learning algorithm was designed. The model had a hybrid structure with a sigmoid activation function for the hidden layer and a linear transfer function in the output layer. Three training algorithms were used in the implementation of the model. Various combinations of normalized output variables of the WRF were used as input for network training and the target was observational wind gust speed. Seventy percent of the data were used for training, fifteen percent for testing and fifteen percent for validation.
    The results showed that the best way to combine the input parameters is to use 10m wind, sea level pressure, temperature and relative humidity resulting from the output of the WRF model and the wind gust speed resulting from both methods mentioned above. Also, the best algorithm for neural network training was the Levenberg-Marquardt algorithm. Finally, the implemented artificial neural network was able to improve the results of both wind gust speed prediction methods (WPD and MOA). Due to the relatively higher accuracy of the WPD method compared with MOA method in predicting the wind gust speed in Iran, the artificial neural network that assumed the prediction of this method as input, was more accurate than MOA method (RMSE, MAE, MSE and R were 2.05, 1.6, 4.21, 0.83 and 2.37, 1.86, 5.2, 0.77, respectively).

کلیدواژه‌ها [English]

  • Artificial neural network
  • numerical model
  • post processing
  • wind gust
  • WRF
امیرمرادی، ک.، بهمنی، ا.، 1393، برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی: نشریه پژوهش­های خاک (علوم خاک و آب) الف، 28(3)، 543-556.
بختیاری، ب.، قهرمان، ن.، رحیمی، ا.، 1392، استفاده از رویکرد شبکة عصبی مصنوعی جهت پیش­بینی کوتاه‌مدت سرعت باد (مطالعه موردی: ایستگاه هواشناسی جیرفت): مجله تحقیقات آب و خاک ایران، 44(1)، 11-20.
حبیبی، ف.، 1397، پیش­بینی باد جستی با شبکه پیش­خور توسط الگوریتم یادگیری پس­انتشار ارتجاعی: مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران، 367–371.
حبیبی، ف.، 1398، انتخاب ویژگی و پیش‌بینی باد گاستی با شبکه عصبی پرسپترون چندلایه‌ای در ایستگاه خودکار فرودگاهی: مجله ژئوفیزیک ایران، 13(3)، 33–52.
حسینی، س. ا.، 1388، برآورد و تحلیل دماهای حداکثر شهرستان اردبیل با استفاده از مدل تئوری­های شبکه عصبی مصنوعی: پایان­نامه کارشناسی ارشد: دانشگاه محقق اردبیلی، گروه جغرافیای طبیعی.
سبزی­پرور، ع. ا.، علیائی، ا.، 1390، ارزیابی عملکرد شبکه­های عصبی مصنوعی در برآورد تابش خورشیدی کل روزانه و مقایسه آن با نتایج مدل انگستروم (مطالعه موردی: ایستگاه همدیدی تبریز): مجله ژئوفیزیک ایران، 5(3)، 30-41.
عرب عامری، م.، حبیبی، ف.، کلهر، ا.، ١٣٩٣، پیش­بینی سرعت باد با استفاده از شبکه عصبی پرسپترون چندلایه در فرودگاه مهرآباد: مجموعه مقالات شانزدهمین کنفرانس ژئوفیزیک ایران، 117-122.
عزیزی، ح. ر.، منتظری، م.، 1394، پیش­بینی دماهای ماهانه ایستگاه­های همدید منتخب استان اصفهان با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه: فصلنامه تحقیقات جغرافیایی، 30(3)، 241-258.
علیقلی­نیا، ت.، رسولی مجد، ن.، رضایی، ح.، جباری، آ.، 1395، کاربرد شبکه عصبی مصنوعی در پیش­بینی تبخیر-  تعرق با حداقل داده­های هواشناسی (مطالعه موردی: شهر ارومیه): محیط زیست و مهندسی آب، 2(2)، 122-135.
قادر، س.، صفر، م.، جوان‌نژاد، ر.، 1397، پیش‌بینی برخی میدان­های هواشناسی با استفاده از یک سامانه همادی توسعه داده شده برای مدل WRF: مطالعه موردی: اولین کنفرانس بین‌المللی پیش‌بینی عددی وضع هوا و اقلیم، تهران، 28 تا 29 آبان 1397.
محمدی، م. ح.، مشکوتی، ا. ح.، قادر، س.، آزادی، م.، 1399، بررسی آماری جست‌بادهای همرفتی و غیرهمرفتی در محدوده ایران: مجموعه مقالات نوزدهمین کنفرانس ژئوفیزیک ایران، آبان 1399، 88-91.
منهاج، م. ب.، 1381، مبانی شبکه­های عصبی: دانشگاه صنعتی امیرکبیر (پلی­تکنیک تهران)، 1381.
منهاج، م. ب.، سیفی­پور، ن.، 1377، کاربرد هوش محاسباتی در کنترل: مرکز نشر پروفسور حسابی، تهران.
نیاز علیزاده، ع.، وکیلی، غ.، صحرائیان، ف.، 1388، پسپردازش برونداد مدل میان­مقیاس WRF برای دمای دو متری سطح زمین با استفاده از شبکه عصبی مصنوعی: هشتمین همایش پیش­بینی عددی وضع هوا، تهران، 2 دی 1388.
AMS wind gust definition, 2018, https://glossary.ametsoc.org/wiki/Gust; Retrieved November 15.
Antonakis, A., Lone, M., and Cooke, A., 2016, Neural network based dynamic model and gust identification system for the jetstream G-NFLA, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(6), 1138–1153.
Brasseur, O., 2001, Development and application of a physical approach to estimating wind gusts: Monthly Weather Review, 129(1), 5-25.
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E., 2011, Wind Energy Handbook: John Wiley and Chichester, S., UK, 742 PP, edition 2.
Chan, P., 2012, An event of tail strike of an aircraft due to terrain-induced wind shear at the Hong Kong International Airport: Meteorological Applications, 19(3), 325–333.
Choi, E. C. C., and Hidayat, F. A., 2002, Gust factors for thunderstorm and non-thunderstorm winds: Journal of Wind Engineering and Industrial Aerodynamics, 90(12), 1683–1696.
Cook, N. J., Harris, R. I., and Whiting, R., 2003, Extreme wind speeds in mixed climates revisited: Journal of Wind Engineering and Industrial Aerodynamics, 91(3), 403–422.
de Meutter, P., Gerard, L., Smet, G., Hamid, K., Hamdi, R., Degrauwe, D., and Termonia, P., 2015, Predicting small-scale, short-lived downbursts: case study with the NWP limited-area ALARO model for the Pukkelpop thunderstorm: Monthly Weather Review, 143(3), 742–756.
Han Jiawei, J. P., and Kamber, M., 2012, Data Mining: Concepts and Techniques, 3rd edition: Morgan Kaufmann Publishers, ISBN 978-0-12-381479-1.
Jolliffe, I. T., and Stephenson, D. B., 2003: Forecast Verifcation: A Practitioner’s Guide in Atmospheric Science: John Wiley and Sons, 240pp.
Kanani, S., Asadollahfardi, G., and Ghanbari, A., 2008, Application of artificial neural network to predict total dissolved solid in Achechay River Basin: World Applied Sciences Journal, 4(5), 646-654.
Kolendowicz, L., Taszarek, M., and Czernecki, B., 2016, Convective and non-convective wind gusts in Poland, 2001-2015: Meteorology Hydrology and Water Management, 4(2), 15-21.
Kurbatova, M., Konstantin, R., Gubenko, I., and Kurbatov, G., 2018, Comparison of seven wind gust parameterizations over the European part of Russia: Advances in Science and Research, 15, 251-255, 10.5194/asr-15-251-2018.
Mohr, S., Kunz, M., Richter, A., and Ruck, B., 2017, Statistical characteristics of convective wind gusts in Germany: Natural Hazards and Earth System Sciences, 17(6), 957-969.
NCO, 1997, Subroutine calgust, Available from the National Weather Service, NCO Production, source code: www.nco.ncep.noaa.gov/pmb/codes/nwprod/global_shared.v14.1.7/sorc/ncep_post.fd/CALGUST.f.
RUC20, 2007, diagnostic output fields for the Rapid Refresh and HRRR, Available from the National Oceanic and Atmospheric Administration website: https://rapidrefresh.noaa.gov/RAP_var_diagnosis.html.
Selcuk Nogay, H., Cetin Akinci, T., and Eidukeviciute, M., 2012, Application of artificial neural networks for short term wind speed forecasting in Mardin, Turkey: Journal of Energy in Southern Africas, 23(4).
Sheridan, P., 2011, Review of Techniques and Research for Gust Forecasting and Parameterisation: Forecasting Research Technical Report 570, Met Office, Exeter.
Singh, V., 2016, Application of artificial neural networks for predicting generated wind power: International Journal of Advanced Computer Science and Applications, 7(3).
Solari, G., Repetto, M. P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M., and Parodi, M., 2012, The wind forecast for safety management of port areas: Journal of Wind Engineering and Industrial Aerodynamics, 104, 266–277.
Stucki, P., Dierer, S., Welker, C., Navarro, J. J. G., Raible, C. C., Martius, O., and Brönnimann, S., 2016, Evaluation of downscaled wind speeds and parameterised gusts for recent and historical windstorms in Switzerland: Tellus A, Dynamic Meteorology and Oceanography, 68(1).
Tokar, A. S., and Markus, M., 2000, Precipitation runoff modeling using artificial neural network and conceptual models: Journal of Hydrologic Engineering, ASCE, 5, 156-161.