پایش نفوذ آب در خاک با استفاده از روش ژئورادار و مقاومت ویژه الکتریکی (مطالعه موردی: مکان آزمایش ژئوفیزیکی دانشگاه صنعتی شاهرود)

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این تحقیق با برداشت داده‌های ژئورادار و مقاومت ویژه الکتریکی از مخزن پلی‌اتیلنی در حالت خالی و پر از محلول کات کبود، روش‌های مقاومت ویژه الکتریکی و رادار نفوذی به زمین (GPR) به‌صورت کنترل‌شده در مکان آزمایش‌های ژئوفیزیک دانشگاه صنعتی شاهرود مطالعه شده است. جهت بررسی چگونگی تغییرات ویژگی‌های الکتریکی بر اثر فرورفت جریان محلول در یک زمین آبرفتی و همچنین تغییرات ناشی از پر یا خالی بودن یک لوله پلی‌اتیلنی مدفون، با استفاده از دو روش ذکر شده، برداشت داده در زمین آبرفتی، قبل و بعد از نشت محلول به سطح زمین انجام شده است. لوله پلی‌اتیلنی مخزنی است که با یک شیر در سطح زمین آبرفتی تخلیه می‌شود. داده‌های مقاومت ویژه الکتریکی و GPR محدوده در دو زمان متفاوت (تابستان و پاییز)، برداشت، پردازش و تفسیر شده است. پردازش، مدل‌سازی و تفسیر داده‌های برداشت شده در قالب مدل‌های دوبعدی مقاومت ویژه الکتریکی و مقاطع عرضی GPR انجام شده است. از مهم‌ترین نتایج این مطالعه می‌توان به عملکرد خوب روش مقاومت ویژه الکتریکی در آشکارسازی جزئیات، آشکار نشدن مناسب جزئیات در روش GPR برای زمین‌های آبرفتی با رس زیاد، نامناسب بودن آنتن فرستنده با بسامد 150 مگاهرتز در روش GPR، اثر مخرب رطوبت بر عملکرد این روش و در نهایت، آشکار نکردن اهداف با روش GPR به دلیل تباین کم گذردهی نسبی الکتریکی بین اهداف و زمینه اشاره کرد. با استفاده از داده‌های مقاومت ویژه الکتریکی لوله پلی‌اتیلنی، قسمت‌هایی که خاک سست و متخلخل دارند، آشکارسازی و مناطق مختلف با توجه به رطوبت نسبی موجود در آنها تفکیک شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Characterization of leachate flow using time lapse ground penetrating radar (GPR) and resistivity survey (case study: geophysical test site of Shahrood University of Technology)

نویسندگان [English]

  • Ali Aghaei Kordeshami 1
  • Ali Reza Arab-Amiri 2
  • Abolghasem Kamkar-Rouhani 2
  • Hamid Bizhani 1
1 MS.c. Student, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Associate Professor, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

This study investigates the efficiency of different geophysical methods for detecting contaminated zones as well as hidden pipes. There are a number of geophysical techniques that can be useful and beneficial for achieving these purposes. Ground penetrating radar (GPR) and electrical resistivity methods are the most useful approaches for identifying polluted areas and buried features, causing us to utilize such methods in the area. Although GPR and electrical resistivity methods are solely effective for mapping subsurface targets, the integration of these methods might provide us valuable information and valid outcomes. In this paper, electrical resistivity and GPR surveys are conducted and acquired data are modelled to investigate the pollution leakage in the ground. To achieve this aim, a polyethylene pipe with inlet and outlet valves is considered as a tank buried underground in the geophysical test site of Shahrood University of Technology.
    In the first step of the study, the electrical properties of the empty pipe were measured and modelled using electrical resistivity and GPR methods. In the next step, the pipe was filled by the cupric sulfate solution and electrical measurements were performed again. In addition, the electrical properties were investigated by means of electrical resistivity and GPR methods in another area, sitting on alluvial soil, after and before injecting the cupric sulfate solution. It is worth mentioning that the measurements were performed after drying the surface which was humid due to the injection of cupric sulfate to avoid false conductivity on the ground. The designed profiles include four lines on a buried reservoir and five profiles on alluvial soil. However, the 2D modeling results and interpretation of the acquired data along with two (on the buried target) and three (on alluvial soil) survey lines are just presented in this paper. After collecting and interpreting the electrical resistivity and GPR data in the study area, the results are in the form of two-dimensional models of electrical resistivity and GPR cross sections, which have been obtained by use of RES2DINV and Prism2 softwares, respectively. The obtained results revealed that the electrical resistivity method enjoys a relatively good performance in detailed detection. It is also shown that the GPR method is not able to work properly in alluvial soils with high clay and it suffers from the unsuitability of the transmitter antenna with a frequency of 150 MHz and the destructive effect of moisture on the performance. Regarding the obtained outcomes and using electrical resistivity data, ground details such as polyethylene reservoir, loose and porous soil parts and separation of different areas according to the relative humidity in them have been revealed.

کلیدواژه‌ها [English]

  • Electrical resistivity
  • Ground Penetrating Radar (GPR)
  • polyethylene pipe
  • two-dimensional modelling
  • geophysical test site of Shahrood University of Technology
حافظی مقدس، ن.، طاهری، ع.، 1384، معرفی منطقه دهملا شاهرود به‌عنوان پارک آموزشی زمین شناسی: بیست و یکمین گردهمایی علوم زمین.
حیدری، ا.، عابر، ح.، جهان­آرا، ع.، 1397، شناسایی تونل مدفون با استفاده از شبیه­سازی عددی دوبعدی داده‌های ژئوفیزیکی رادار نفوذی به زمین، مطالعه موردی: تونل شماره 3 آزادراه تهران- پردیس: پژوهش­های ژئوفیزیک کاربردی، 4(1)، 81-93.
کامکار روحانی، ا.، اکبری فیض‌آبادی، و.، شاه­پسندزاده، م.، یعقوبی­تبار، ب.، دژپسند، س.، راه انجام، م.، بابائی، م.، 1393، بررسی گسترش آلودگی آب زیرزمینی با استفاده از توموگرافی الکتریکی: کنفرانس ژئوفیزیک ایران.
 
Abdullahi, N. K., Osazuwa, I. B., and Sule, P. O., 2011, Application of integrated geophysical techniques in the investigation of groundwater contamination: A case study of municipal solid waste leachate: Ozean Journal of Applied Sciences, 4(1), 7-25.
Allred, B. J., Fausey, N. R., Peters, L., Jr., Chen, C., Daniels, J. J., and Youn, H., 2004, Detection of buried agricultural drainage pipe with geophysical methods: Applied Engineering in Agriculture, 20(3), 307-318.
Basile, V., Carrozzo, M. T., Negri, S., Nuzzo, L., Quarta, T., and Villani, A. V., 2000, A ground-penetrating radar survey for archaeological investigations in an urban area (Lecce, Italy): Journal of Applied Geophysics, 44(1), 15-32, ISSN 0926-9851.
Benson, A. K., 1995, Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities: Journal of Applied Geophysics, 33(1–3), 177-193, ISSN 0926-9851.
Benson, A. K., Frederickson, C., and Mustoe, N. B., 1991, Ground penetrating radar, electrical resistivity, soil and water quality studies integrated to determine the source(s) and geometry of hydrocarbon contamination at a site in north-central Arizona: Proceedings of the 27th symposium on engineering geology and geotechnical engineering, 31–38.
Benson, A. K., and Mustoe, N. B., 1998, Integration of electrical resistivity, ground-penetrating radar, and very low-frequency electromagnetic induction surveys to help map groundwater contamination produced by hydrocarbons leaking from underground storage tanks: Environmental Geosciences Journal, 5(2), 61-67.
Capozzoli, L., and Rizzo, E., 2017, Combined NDT techniques in civil engineering applications: Laboratory and real test: Construction and Building Materials, 154, 1139–1150.
de Cassia Silva Bacha, D., Santos, S., de Alcantara Mendes, R., et al., 2021, Evaluation of the contamination of the soil and water of an open dump in the Amazon Region, Brazil: Environmental Earth Sciences, 80(3), 113.
Degenhardt, Jr., J. J., Giardino, J. R., and Junck, M. B., 2003, GPR survey of a lobate rock glacier in Yankee Boy Basin, Colorado, USA: Geological Society, London, Special Publications, 211, 167-179.
Dentith, M., and Mudge, S. T., 2014, Geophysics for the Mineral Exploration Geoscientist: Cambridge University Press.
Doolittle, J. A., Jenkinson, B., Hopkins, D., Ulmer, M., and Tuttle, W., 2006, Hydropedological investigations with ground penetrating radar (GPR): Estimating water-table depths and local ground-water flow pattern in areas of coarse textured soils: Geoderma, 131(3–4), 317-329, ISSN 0016-7061.
Emam, A. E., Lethy, A., Radwan Ali, M., and Awad, A., 2021, Archaeological investigation and hazard assessment using magnetic, ground penetrating radar, and GPS tools at Dahshour Area, Giza, Egypt: Frontiers in Earth Science, 9, 437. 
Ernstson, K., and Kirsch, R., 2006, Groundwater Geophysics: A Tool for Hydrogeology: Springer.
Ibraheem, I. M., Ergers, R. B., and Tezkan, B., 2021, Archaeogeophysical exploration in Neuss-Norf, Germany using electrical resistivity tomography and magnetic data: Near Surface Geophysics, 19(5), 603-623.
James, M., and Nobes, D. C., 2015, Time lapse characterization of leachate flow using electromagnetics and ground penetrating radar: Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7-10 July 2015, 211–214. 
Kirsch, R., and Yaramanci, U., 2009, Geoelectrical Methods, in Groundwater Geophysics: Springer, 85–117.
Kleanthis, S., Papadopoulos, N., and Cantoro, G., 2016, Shallow off-shore archaeological prospection with 3-D electrical resistivity tomography: The case of Olous (Modern Elounda), Greece: Remote Sensing, 8(11), 897.
Loke, M. H., and Lane, Jr., J. W., 2004, Inversion of data from electrical resistivity imaging surveys in water-covered areas: Exploration Geophysics, 35(4), 266-271.
Modin, I. N., Shevnin, V. A., Bobatchev, A. A., Bolshakov, D. K., Leonov, D. A., and Vladov, M. L., 1997, Investigations of oil pollution with electrical prospecting methods: 3rd EEGS Meeting, cp-95, European Association of Geoscientists and Engineers.‏
Naguyen, F., Garambois, S., Jongmans, D., Pirard, E., Loke, M. H., 2012, Image processing of 2D resistivity data for imaging faults: Journal of Applied Geophysics, 57(4), 260-277.
Neal, A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Science Review, 66(3–4), 261–330.
Oldenburg, D. W., and Li, Y., 2005, Inversion for Applied Geophysics: A Tutorial: Near-Surface Geophysics, 89–150.
Parnow, S., Bizhani, H., and Zarei, M., 2020, Application of ground penetrating radar (GPR) to discover water table: The 19th Iranian geophysical conference.
Redman, D., Parkin, G. W., and Annan, A. P., 2000, Borehole GPR measurement of soil water content during an infiltration experiment: Eighth International Conference on Ground Penetrating Radar, 4084, 501–505.
Reyes-López, J. A., Ramírez-Hernández, J., Lázaro-Mancilla, O., Carreón-Diazconti, C., and Garrido, M. M., 2008, Assessment of groundwater contamination by landfill leachate: A case in México: Waste Management, 28, Supplement 1(2-3), S33-S39, ISSN 0956-053X.
Reynolds, J. M., 1997, An Introduction to Applied and Environmental Geophysics: John Wiley & Sons, Chichester, 418-459.
Reynolds, J. M., 2011, An Introduction to Applied and Environmental Geophysics, 2nd edition: John Wiley & Sons.
Riwayat, A. I., et al., 2018, Application of electrical resistivity method (ERM) in groundwater exploration:
Journal of Physics: Conference Series, 995 012094.
Sana, H., Taborik, P., Valenta, J., Bhat, F. A., Flašar, J., Štěpančíkova, P., and Khwaja, N. A., 2021, Detecting active faults in intramountain basins using electrical resistivity tomography: A focus on Kashmir Basin, NW Himalaya: Journal of Applied Geophysics, 192, 104395, ISSN 0926-9851.
Shafri, H. Z. M., Abdullah, RSA R., Roslee, M., and Muniandy, R., 2008, Optimization of ground penetrating radar (GPR) mixture model in road pavement density data analysis: IGARSS IEEE International Geoscience and Remote Sensing Symposium, 3, III–1326.
Soldovieri, F., Catapano, I., Barone, P. M., et al., 2013, GPR estimation of the geometrical features of buried metallic targets in testing conditions: Progress In Electromagnetics Research B, 49, 339-362.
Telford, W. M., Geldart, L. P. R. E., and Sheriff, R. E., 1990, Applied Geophysics: Cambridge University Press.
Vaughan, C. J., 1986, Ground‐penetrating radar surveys used in archaeological investigations: Geophysics, 51(3).
Van Dam, R. L., Schlager, W., Dekkers, M. J., and Huisman, J. A., 2002, Iron oxides as a cause of GPR reflections: Geophysics, 67(2), 536–545.
Wahab, S., Saibi, H., and Mizunaga, H., 2021, Groundwater aquifer detection using the electrical resistivity method at Ito Campus, Kyushu University (Fukuoka, Japan): Geoscience Letters, 8, 15.
Wang, T., Chen, Y., Chen, C., et al., 2020, Application of cross-hole electrical resistivity tomography to groundwater contaminated remediation site: Terrestrial, Atmospheric & Oceanic Sciences, 31(5), 507-521.
Wang, T. P., Chen, C. C., Tong, L. T., et al., 2015, Applying FDEM, ERT and GPR at a site with soil contamination: A case study: Journal of Applied Geophysics, 121, 21-30.‏
Zhanxiang, H., Hu, Z., Gao, Y., et al., 2015, Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method: Geophysics, 80(2), WA127–WA134