توموگرافی امواج سطحی و ناهمسانگردی شعاعی با استفاده از تداخل‌سنجی لرزه‌ای در گستره البرز مرکزی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 موسسه ژئوفیزیک دانشگاه تهران، گروه ژئوفیزیک، تهران، ایران گروه ژئوفیزیک، دانشگاه صنعتی دلفت، دلفت، هلند

2 استادیار گروه زلزله شناسی، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

3 گروه ژئوفیزیک، دانشگاه صنعتی دلفت، دلفت، هلند

چکیده

امروزه روش تداخل‌سنجی لرزه‌ای روشی کارآمد در مطالعات زلزله‌شناسی است و امکان استفاده از نوفه محیطی در این روش به علت تکرارپذیر بودن و محدوده فرکانسی گسترده بسیار حائز اهمیت است. یکی از کاربردهای مهم تداخل‌سنجی لرزه‌ای، توموگرافی لرزه‌ای و ناهمسانگردی شعاعی است. روش‌های معمول توموگرافی لرزه‌ای نیازمند تعیین ابعاد شبکه‌بندی یا پارامترهایی همچون هموارسازی و میرایی هستند. روش توموگرافی پیشنهادی در این مطالعه، روشی بسیار نوین است که تعداد پارامترهای نامعینی دارد و به شبکه‌بندی ازپیش‌تعریف‌شده یا پارامترهایی همچون هموارسازی و میرایی نیاز ندارد. منطقه مورد مطالعه در این پژوهش، محدوده البرز مرکزی در عرض جغرافیایی 0/38-5/34 درجه شمالی و طول جغرافیایی 5/54-5/48 درجه شرقی است. توموگرافی و ناهمسانگردی شعاعی در این منطقه با استفاده از داده‌های به‌دست‌آمده از نوفه‌های محیطی، اِعمال تداخل‌سنجی لرزه‌ای و همچنین داده‌های زمین‌لرزه به‌دست‌آمده‌است. نتایج، نشان‌دهنده امکان تفکیک ایالت‌های لرزه‌زمین‌ساختی متفاوت بر اساس بی‌هنجاری‌های سرعتی و ناهمسانگردی شعاعی در منطقه است. نقشه ناهمسانگردی شعاعی نیز نشان‌دهنده وجود ماگمای سرد‌شده دماوند در عمق حدود بیست کیلومتری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Surface wave tomography and radial anisotropy using seismic interferometry in the Cental Alborz

نویسندگان [English]

  • Faezeh Shirmohammadi 1
  • Mohammad Reza Hatami 2
  • Amin Rahimi Dalkhani 3
1 Institute of Geophysics, University of Tehran, Tehran, Iran Delft University of Technology, Delft, Netherlands
2 Assistant professor in Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Delft University of Technology, Delft, Netherlands
چکیده [English]

Seismic interferometry is a method that allows the retrieval of the seismic response at one receiver from a virtual source at the position of another receiver. In recent years, seismic interferometry has become a common tool in seismological studies. With continuous recording data in seismic stations, new opportunities are available to seismologists to present new hypotheses and studies. Continuous data contains ambient noise which has random amplitudes and phases and can propagate in all possible directions, so by using ambient noise, it is possible to retrieve responses between two seismic stations.
In most applications, long-duration vertical and horizontal components of continuous time series recorded at two stations are cross-correlated to approximate the Green’s function between the two stations. After stacking all available data for each station’s pairs, group velocity dispersion curves are measured using multiple-filter analysis for each EGF signal.
    In our research, group velocity dispersion measurements are used for tomography. The radial anisotropy can be inferred from the Love–Rayleigh (L–R) discrepancy, that is, from the difference between the travelling speeds of horizontally and vertically polarized surface waves. Seismic anisotropy in the Earth’s crust is the signature of past and ongoing crustal deformation. Thus, observation of this anisotropy reflects the nature and distribution of the deformation bearing on the crustal rock. In conventional seismic tomography techniques, it is necessary to determine the dimensions of grids or other parameters such as smoothing and damping. A two-step inversion algorithm is employed to solve the tomographic inverse problem. In this study, transdimensional tomography is applied, which adapts to a non-uniform data coverage without requiring any arbitrary regularization such as damping or smoothing. It is a one-step non-linear tomographic algorithm. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps. The study area in this research is the Central Alborz area (latitude 34.5-38 N degrees and longitude 48.5-54.5 E degrees). We process all available contentious vertical and horizontal seismic data from the Iranian Seismological Center (IRSC) and the International Institute of Earthquake Engineering and Seismology (IIEES) in this region for the three years from 2013 through 2016. Also, we use data from earthquakes with magnitude above 3.5, which were recorded on these stations between 2006 and 2016.
   The results obtained from seismic tomography and radial anisotropy show the possibility of separation between different tectonic seismic regions based on the velocity anomalies and radial anisotropy. Moreover, radial anisotropy shows the cooled Damavand magma at a depth of about 20 km.

کلیدواژه‌ها [English]

  • Seismic interferometry
  • ambient noise
  • surface waves
  • transdimensional tomography
  • radial anisotropy
موقری، ر.، جوان دلوئی، غ.، ١٣٩٧، تعیین ساختار سرعتی پوسته بالایی جنوب غرب تهران با استفاده از توموگرافی نوفه لرزه‌ای درون­چاهی: فیزیک زمین و فضا، 44(3)، 281-295.
Abdetedall, M., Shomali, Z. H., and Gheitanchi, M. R., 2015, Ambient noise surface wave tomography of the Makran subduction zone, south-east Iran: Implications for crustal and uppermost mantle structures: Earthquake Science, 28(4), 235–251.
Afra, M., and et al., 2021, Three-dimensional P-wave tomography in the Central Alborz, Iran: Physics of the Earth and Planetary Interiors, 315(1), 106711.
Bayes, T., 1958, Essay towards solving a problem in the doctrine of chances: Biometrika, 45, 293–315.
Bodin, T., Sambridge, M., and Gallagher, K., 2009, A self-parametrizing partition model approach to tomographic inverse problems: Inverse Problems, 25(5), 055009.
Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P., 2012, Transdimensional tomography with unknown data noise: Geophysical Journal International, 189, 1536–1556.
Bodin, T., and Sambridge, M., 2009, Seismic tomography with the reversible jump algorithm: Geophysical Journal International, 178, 1411–1436.
Draganov, D., Wapenaar, K., Thorbecke, J., and Nishizawa, O., 2007, Retrieving reflection responses by cross correlating transmission responses from deterministic transient sources: Application to ultrasonic data: The Journal of the Acoustical Society of America, 122(5), 172-178.
Herrmann, R. B., 1973. Some aspects of band-pass filtering of surface waves: Bulletin of the Seismological Society of America, 63(2), 663–671.
Kaviani, A., Paul, A., Moradi, A., and et al., 2020, Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography: Geophysical Journal International, 221(2), 1349–1365.
Mostafanejad, A., Shomali, Z. H., Mottaghi, A. A., 2011, 3-D velocity structure of Damavand volcano, Iran, from local earthquake tomography: Journal of Asian Earth Sciences, 42(6), 1091–1096.
Mottaghi, A., Rezapour, M., and Tibuleac, I., 2012, Ambient noise Rayleigh wave shallow tomography in the Tehran region, Central Alborz, Iran: Seismological Research Letters, 83(3), 498–504.
Movaghari, R., and JavanDoloei, G., 2020, 3-D crustal structure of the Iran plateau using phase velocity ambient noise tomography: Geophysical Journal International, 220(3), 1555–1568.
Movaghari, R., and JavanDoloei, G., Yang, Y., Tatar, M., and Sadidkhouy, A., 2021, Crustal radial anisotropy of the Iran Plateau inferred from ambient noise tomography: Journal of Geophysical Research: Solid Earth, 126(4).
Rahimi Dalkhani, A., Zhang, X., and Weemstra, C., 2021, On the potential of 3D transdimensional surface wave tomography for geothermal prospecting of the Reykjanes Peninsula: Remote Sensing, 13(23), 4929.
Rawlinson, N., and Sambridge, M., 2004, Wavefront evolution in strongly heterogeneous layered media using the fast marching method: Geophysical Journal International, 156, 631–647.
Rezaeifar, M., and Kissling, E., 2020, Regional 3-D lithosphere structure of the northern half of Iran by local earthquake tomography: Geophysical Journal International, 223(3), 1956–1972
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., 2005, Extracting time domain Green’s function estimates from ambient seismic noise: Geophysical Research Letters, 32(3).
Sadidkhouy, A., Javan-Doloei, Gh., and Siahkoohi, H. R., 2008, Seismic anisotropy in the crust and upper mantle of the Central Alborz region, Iran: Tectonophysics, 456, 194–205.
Sethian, J. A., 1996, A fast marching level set method for monotonically advancing fronts: Proceedings of the National Academy of Sciences of The United States of America, 93(4), 1591–1595.
Shirmohammadi, F., Draganov, D., Hatami, M. R., and Weemstra, C., 2021, Application of seismic interferometry by multidimensional deconvolution to earthquake data recorded in Malargüe, Argentina: Remote Sensing, 13, 4818.
Shirzad, T., and Shomali, Z. H., 2014, Extracting seismic body and Rayleigh waves from the ambient seismic noise using the rms-stacking method: Seismological Research Letters, 86(1), 173–180.
Weemstra, C., Draganov, D., Ruigrok, E., Hunziker, J., Gomez, M., and Wapenaar, K., 2016, Application of seismic interferometry by multidimensional deconvolution to ambient seismic noise recorded in Malargüe, Argentina: Geophysical Journal International, 208(2), 693–714.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F., 2013, Generic Mapping Tools: Improved Version Released, EOS Trans. AGU, 94(45), 409–410.
Yanovskaya, T. B., Kizima, E. S., and Antonova, L. M., 1998, Structure of the crust in the Black Sea and adjoining regions from surface wave data: Journal of Seismology, 2, 303–316.
Zhang, X., Curtis, A., Galetti, E., and de Ridder, S., 2018, 3-D Monte Carlo surface wave tomography: Geophysical Journal International, 215, 1644–1658.
Zhang, X., Hansteen, F., Curtis, A., and de Ridder, 2020, 1-D, 2-D, and 3-D Monte Carlo ambient noise tomography using a dense passive seismic array installed on the North Sea Seabed: Journal of Geophysical Research, Solid Earth, 125.