توزیع ازون وردسپهری در منطقه جنوب غرب آسیا و عوامل مؤثر بر آن

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری هواشناسی، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 استاد گروه فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 دانشیار گروه فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

4 استاد، گروه دینامیک جوّ، موسسه علوم جوی و اقلیمی دانشگاه ای‌تی‌اچ زوریخ، زوریخ، سوئیس

چکیده

در این پژوهش توزیع ازون وردسپهری، که گازی آلاینده و گلخانه‌ای در جوّ است، در لایه‌های مختلف وردسپهر روی منطقه جنوب غرب آسیا بررسی شده است. این مطالعه برای دوره پنج ساله ۲۰۱۲ تا ۲۰۱۶ با استفاده از داده‌های CAMSRA حاصل سومین پروژه ECMWF در حوزه شیمی جوّ انجام شده است. نتایج میانگین ماهانه غلظت ازون وردسپهری در منطقه و سری زمانی آن در سه ناحیه روی ایران (شمال غرب ایران، تهران و جنوب شرق ایران) نشان دادند بیشینه ازون در لایه‌های مختلف وردسپهر با چشمه‌های متفاوت، در فصل تابستان رخ می‌دهد. این بیشینه در لایه‌های زیرین (سطح زمین تا ۷۰۰ هکتوپاسکال) بیشتر منشأ انسان‌زاد دارد و در لایه‌های میانی و زبرین، حاصل نفوذ هوای پوشن‌سپهری به وردسپهر است.
    فرونشست هوا در دو منطقه شرق مدیترانه و شرق خزر و افغانستان و همچنین وقوع پدیده‌‌‌های تاشدگی وردایست یا انتقال هوای پوشن‌سپهر به وردسپهر در دو منطقه مذکور که ریشه در مونسون هند در طول تابستان دارد، علت اصلی غلظت زیاد ازون در لایه‌های میانی جوّ منطقه است. همچنین مطالعات آماری رخداد بی‌هنجاری ازون نشان داد دوره‌های افزایش غلظت ازون در منطقه جنوب شرق ایران به‌کرات رخ می‌دهد. این موضوع می‌تواند ناشی از تغییر در عوامل انتقال ازون پوشن‌سپهری در منطقه باشد؛ مانند تغییر در گردش مونسون هند و واچرخند تبت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Distribution of tropospheric ozone over southwest Asia

نویسندگان [English]

  • Mahsa Damanafshn 1
  • Abbas_Ali Aliakbari Bidokhti 2
  • Omid Alizadeh 3
  • Michael Sprenger 4
1 Ph.D. Student, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Associate Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
4 Senior Scientist, Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
چکیده [English]

In this study, the distribution of tropospheric ozone as an air pollutant and an important greenhouse gas has been investigated in various layers of the troposphere over Southwest Asia. This research has been conducted for a 5-year period (2012-2016) using the Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) dataset, the result of the third European Centre for Medium-Range Weather Forecasts (ECMWF) project on atmospheric composition reanalysis. The analysis of the monthly mean concentration of tropospheric ozone over Southwest Asia and its time series (6-hourly data for the 5-year period) over three areas in northwestern and southeastern Iran, and Tehran show that the concentration of ozone has an annual cycle, with the maximum in summer. The maximum ozone in different layers of the troposphere (at the surface, and 700 and 500 hPa) occurs during summer. The maximum concentration in the lower layers (up to 700 hPa) is mostly caused by anthropogenic sources, while in the middle to upper troposphere, it is the result of the injection of stratospheric air into the troposphere. The high concentration of NO2 in highly populated metropolitan areas, such as Tehran and industrial areas in the Persian Gulf and the Gulf of Oman, contributes to the photochemical production of ozone. In these areas, the concentration of ozone is higher during the daytime and summer compared to the nighttime and winter. This is due to the increase in the photochemical production of ozone when the incoming solar radiation is high. Moreover, there are two hot spots of ozone concentration at 500 hPa over two regions: the eastern Mediterranean region and the east of the Caspian Sea toward Afghanistan. Large-scale subsidence and the occurrence of the tropopause fold and/or the stratosphere to troposphere transport (STT) in these two regions, linked to the Indian summer monsoon, are the main causes of the occurrence of high concentrations of ozone in the middle troposphere. The monsoon diabatic heating can induce Gill-type Rossby waves that propagate westward and cause descent via the interaction with the midlatitude westerlies. The topography of the region, e.g., the Zagros Mountains, is also effective in increasing this descent. In general, every horizontal airflow that encounters steep isentropic slopes at the upper and middle troposphere is forced to descend. We were able to detect a wave-like pattern in ozone concentration at the 300 hPa level, which can be linked to a corresponding pattern of vertical velocities in the region. Furthermore, the statistical analysis indicates that high ozone concentration events frequently occur in southeastern Iran. This could be due to transient variations in the monsoon circulation over India, the Tibetan anticyclone, and the mid-level anticyclone, all of which also affect the transport of the stratospheric ozone in the region.

کلیدواژه‌ها [English]

  • Tropospheric ozone
  • tropopause fold
  • stratospheric ozone
  • Southwest Asia
برهانی، ر.، احمدی گیوی، ف.، قادر، س.، محب‌الحجه، ع. ر.، ۱۳۹۶، مطالعه فراوانی و توزیع تاشدگی وردایست و تغییرات فصلی آن در سال­های ۲۰۱۳-۲۰۱۵ با تأکید بر منطقه جنوب غرب آسیا: مجله فیزیک زمین و فضا، ۴۴(۳)، ۶۲۴-۶۰۷.
برهانی، ر.، احمدی گیوی، ف.، ۱۳۹۷، تحلیل آماری- دینامیکی تاشدگی­های وردایست منطقه جنوب غرب آسیا در سال­های ۲۰۰۰ تا ۲۰۱۵: مجله ژئوفیزیک ایران، ۱۲(۲)، ۱۴۶-۱۲۷.
Basha, G., Ratnam, M. V., and Kishore, P., 2020, Asian summer monsoon anticyclone: trends and variability: Atmospheric Chemistry and Physics, 20(11), 6789-6801.
Borhani, R., Ahmadi-Givi, F., Ghader, S., and Mohebalhojeh, A. R., 2022, A climatological-dynamical analysis of tropopause folds over Southwest Asia in the period of 1989–2018: Dynamics of Atmospheres and Oceans, 98, 101300.
Danielsen, E. F., 1968, Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity: Journal of Atmospheric Sciences, 25(3), 502-518.
Dayan, U., Ricaud, P., Zbinden, R., and Dulac, F., 2017, Atmospheric pollution over the eastern Mediterranean during summer–a review: Atmospheric Chemistry and Physics, 17(21), 13233-13263.
Fishman, J., Solomon, S., and Crutzen, P. J., 1979, Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone: Tellus, 31(5), 432-446.
Gill, A. E., 1980, Some simple solutions for heat-induced tropical circulation: Quarterly Journal of the Royal Meteorological Society, 106(449), 447-462.
Haagen-Smit, A. J., 1952, Chemistry and physiology of Los Angeles smog: Industrial & Engineering Chemistry, 44(6), 1342-1346.
Hoskins, B. J., and Rodwell, M. J., 1995, A model of the Asian summer monsoon. Part I: The global scale: Journal of Atmospheric Sciences, 52(9), 1329-1340.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., and Huijnen, V., 2019, The CAMS reanalysis of atmospheric composition: Atmospheric Chemistry and Physics, 19(6), 3515-3556.
Junge, C. E., 1962, Global ozone budget and exchange between stratosphere and troposphere: Tellus, 14(4), 363-377.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., and Korrmann, R., 2002, Global air pollution crossroads over the Mediterranean: Science, 298(5594), 794-799.
Liu, Y., Hoskins, B., and Blackburn, M., 2007,
 
Impact of Tibetan orography and heating on the summer flow over Asia: Journal of the Meteorological Society of Japan, Ser. II, 85, 1-19.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., and Stevenson, D. S., 2015, Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer: Atmospheric Chemistry and Physics, 15(15), 8889-8973.
Ortega, S., Webster, P. J., Toma, V., and Chang, H. R., 2017, Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere: Climate Dynamics, 49(9), 3159-3174.
Paetzold, H. K., 1955, New experimental and theoretical investigations on the atmospheric ozone layer: Journal of Atmospheric and Terrestrial Physics, 7, 128-140.
Reed, R. J., and Danielsen, E. F., 1958, Fronts in the vicinity of the tropopause: Archiv für Meteorologie, Geophysik und Bioklimatologie, Ser. A, Meteorologie und Geophysik, 11(1), 1-17.
Regener, E., and Regener, V. H., 1934, Aufnahmen des ultravioletten Sonnenspektrums in der Stratosphäre und die vertikale Ozonverteilung: Physikalische Zeitschrift, 35, 788-793.
Regener, V. H., 1957, The vertical flux of atmospheric ozone: Journal of Geophysical Research, 62(2), 221-228.
Regener, E., 1941, Ozonschicht Und Atmosphärische Turbulenz: Reichsamt f. Wetterdienst (Luftwaffe).
Rodwell, M. J., and Hoskins, B. J., 1996, Monsoons and the dynamics of deserts: Quarterly Journal of the Royal Meteorological Society, 122(534), 1385-1404.
Rodwell, M. J., and Hoskins, B. J., 2001, Subtropical anticyclones and summer monsoons: Journal of Climate, 14(15), 3192-3211.
   Schönbein, CF. 1843, On the Odour Accompanying Electricity, and on the Probability of Its Dependence on the Presence of a New Substance; by CF Schœnbein, Professor of Chemistry, Bâle, Communicated in a Letter to Michael Faraday, Esq., DCL, FRS, &C: Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, 4, 226-226.
Škerlak, B., Sprenger, M., and Wernli, H., 2014, A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011: Atmospheric Chemistry and Physics, 14(2), 913-937.
Sprenger, M., Croci Maspoli, M., and Wernli, H., 2003, Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001: Journal of Geophysical Research: Atmospheres, 108(D12).
Sprenger, M., and Wernli, H., 2003, A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993): Journal of Geophysical Research: Atmospheres, 108(D12).
Tyrlis, E., and Lelieveld, J., 2013, Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean: Journal of the Atmospheric Sciences, 70(11), 3374-3396.
Tyrlis, E., Lelieveld, J., and Steil, B., 2013, The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon: Climate Dynamics, 40(5), 1103-1123.
Wei, W., Zhang, R., Yang, S., Li, W., and Wen, M., 2019, Quasi-biweekly oscillation of the South Asian high and its role in connecting the Indian and East Asian summer rainfalls: Geophysical Research Letters, 46(24), 14742-14750.
Wernli, H., and Bourqui, M., 2002, A Lagrangian “1-year climatology” of (deep) cross-tropopause exchange in the extratropical Northern Hemisphere: Journal of Geophysical Research: Atmospheres, 107(D2), ACL-13.
Wernli, H., and Davies, H. C., 1997, A Lagrangian-based analysis of extratropical cyclones, I: The method and some applications: Quarterly Journal of the Royal Meteorological Society, 123, 467-489.
Zaitchik, B. F., Evans, J. P., and Smith, R. B., 2007, Regional impact of an elevated heat source: The Zagros Plateau of Iran: Journal of Climate, 20(16), 4133-4146.
Zhang, Q., Wu, G., and Qian, Y., 2002, The bimodality of the 100hPa South Asia High and its relationship to the climate anomaly over East Asia in summer: Journal of the Meteorological Society of Japan, Ser. II, 80(4), 733-744.