پیش‌نگری تنش گرمایی در ایران بر اساس برونداد چند مدلی همادی CMIP6

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، گروه جغرافیا، دانشگاه یزد، یزد، ایران

2 استاد آب و هواشناسی، گروه جغرافیا، دانشگاه یزد، یزد، ایران

3 دانشیار آب و هواشناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران

4 دانشیار آب و هواشناسی، گروه جغرافیا، دانشگاه یزد، یزد، ایران

5 پژوهشگر پسادکتری آب و هواشناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف این مطالعه پراکنش فضایی شاخص UTCI طی دوره‌های تاریخی و آینده در ایران است. برای این منظور سه متغیر دما، رطوبت نسبی و تندی باد روزانه از دو دسته داده شامل داده‌های 124 ‌ایستگاه هواشناسی همدیدی و پنج مدل از سری مدل‌های CMIP6 شامل GFDL-ESM4، IPSL-CM6A-LR، MPI-ESM1-2-HR، MRI-ESM2-0 و UKESM1-0-LL بررسی شدند. سپس یک مدل همادی (CMIP6-MME) از این پنج مدل با روش میانگین وزنی مستقل (IWM) تولید شد. کارایی مدل‌های منفرد و مدل همادی تولید شده با نمودار تیلور مورد بررسی قرار گرفت که نتایج نشان داد چند مدلی همادی از مدل‌های منفرد کارایی بالاتری را برای هر سه متغیر مورد بررسی دارد. نتایج نشان داد پراکنش فضایی میانگین‌های اقلیمی فصلی شاخص‌ UTCI وردایی قابل‌توجهی در ایران نشان می‌دهد و وردایی این شاخص تحت‌تأثیر عرض جغرافیایی، توپوگرافی پیچیده و دوری و نزدیکی به منابع آبی در ایران است. به‌طور‌کلی تنش‌ گرمایی در ایران تا پایان قرن افزایش قابل توجهی خواهد داشت و شاهد کاهش قابل توجه پهنه‌هایی با عدم تنش گرمایی تا پایان قرن حاضر خواهیم بود. در مقابل، در اواخر قرن تنش گرمایی قوی تا خیلی قوی به‌طور قابل توجهی در کشور افزایش می‌یابد. در حالی که پهنه‌هایی با عدم تنش گرمایی جابجایی مکانی به مناطق‌ مرتفع‌تر و عرض‌های جغرافیایی بالاتر را نشان می‌دهند. این نتایج نشان می‌دهد که اقدامات مؤثری برای سازگاری با گرمایش جهانی و کاهش پیامدهای آن باید انجام شود تا از تأثیر نامطلوب تغییرات پیش‌نگری شده تنش گرمایی در ایران جلوگیری شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projected heat stress in Iran based on CMIP6 multi-model ensemble

نویسندگان [English]

  • Elham Kadkhoda 1
  • Kamal Omidvar 2
  • Azar Zarrin 3
  • Ahmad Mazidi 4
  • Abbasali Dadashi-Roudbari 5
1 Ph.D. student of Climatology, Department of Geography, Yazd University,Yazd, Iran
2 Professor of Climatology, Department of Geography, Yazd University,Yazd, Iran
3 Associate Professor of Climatology, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran
4 Associate Professor of Climatology, Department of Geography, Yazd University, Yazd, Iran
5 Postdoctoral Research Associate of Climatology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Climate change has significantly increased the frequency and intensity of heat stress and has more effects than increasing average temperature. This study has investigated the spatial distribution of the universal thermal climate index (UTCI) during historical and future periods in Iran. The UTCI (°C) refers to “the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model” (Jendritzky et al., 2012). In this way, the UTCI is an equivalent temperature, similar to PT. The thermal impact of the meteorological conditions is compared to the one of a standardized reference “indoor” environment with RH = 50% (Ta < 29 °C), WS = 0.5 m s−1, pa = 20 hPa (Ta < 29 °C), and Tmrt = Ta (Shin et al. 2022). Three variables of daily temperature, relative humidity, and wind speed from two sets of data, including 124 meteorological stations and five models from the Coupled Model Intercomparison Project phase 6 (CMIP6) model, including GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL were investigated with a horizontal resolution of 0.5o. Then, an ensemble model (CMIP6-MME) was generated from these five models using the independent weighted mean (IWM) method. The performances of individual models and the generated ensemble model were examined by Taylor's diagram. The results showed that the multi-model ensemble has higher performance than individual models for all three variables. The results revealed that the spatial distribution of the seasonal averages of the UTCI index has significant variability in Iran, and the variability of this index is affected by the latitude, complex topography, and distance to water resources in Iran. In general, heat stress will increase significantly in Iran by the end of the century. So, we will witness a significant decrease in areas with no heat stress until the end of this century. On the contrary, strong to very strong heat stress events will increase significantly in the country at the end of the century. While the areas with no thermal stress show a spatial displacement to mountainous regions and higher latitudes. These results show that effective adaptation methods should be taken to adapt to global warming and reduce its consequences to avoid the adverse effect of increasing heat stress events in Iran. The results show the overall increasing trend of Iran's heat stress in the near and far future. The highest increase in heat stress anomalies (13.3 degrees Celsius in winter during the far future period under the SSP5-8.5 scenario) can be found in the northwest and west of the country. The increasing intensity of heat stress in the western and northwestern parts of Iran may be related to elevation-dependent warming (EDW).
 

کلیدواژه‌ها [English]

  • Heat stress
  • UTCI index
  • multi-model ensemble
  • CMIP6
  • Iran
زرین، آ.، داداشی رودباری، ع.، 1399، پیش‌نگری چشم‌انداز بلندمدت دمای آینده ایران مبتنی بر برونداد پروژه مقایسه مدل‌های جفت‌شدة فاز ششم (CMIP6): فیزیک زمین و فضا، 46(3)، 583-602.
زرین، آ.، داداشی رودباری، ع.،  1400، پیش‌نگری دوره‌های خشک و مرطوب متوالی در ایران مبتنی بر برونداد همادی مدل‌های تصحیح شده اریبی CMIP6: فیزیک زمین و فضا، 47(3)، 561-578.
زرین، آ.، داداشی رودباری، ع.، کدخدا، ا.، 1401، پیش‌نگری خشکسالی تحت سناریوهای SSP تا پایان قرن بیست و یکم، مطالعه موردی: حوضه دریاچه ارومیه: تحقیقات آب و خاک ایران. پذیرفته شده برای انتشار.
فتاحی، ک.، نصراللهی، ن.، انصاری منش، م.، خداکرمی، ج.، عمرانی پور، ع.، 1400،  مقایسه محدوده آسایش حرارتی باغ فین و بافت تاریخی کاشان: نقش جهان - مطالعات نظری و فناوری‌های نوین معماری و شهرسازی، ۱۱ (۱)، ۶۳-۵۳.
نظری پور، ح.، طاوسی، ت.، 1400، ارزیابی آسایش حرارتی فضای باز همگانی با تأکید بر تقویت مناسبات اجتماعی در محله­های شهری (مطالعه موردی: کوی قدس، زاهدان): جغرافیای اجتماعی شهری، 8(1)، 287-306.
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J., 2021, Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain: International Journal of Climatology, 41, E171-E186.
Bishop, C. H., & Abramowitz, G., 2013, Climate model dependence and the replicate Earth paradigm: Climate dynamics, 41(3-4), 885-900.
Błażejczyk, K., 2021, UTCI—10 years of applications: International Journal of Biometeorology, 65(9), 1461-1462.
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B., 2012, Comparison of UTCI to selected thermal indices: International journal of biometeorology, 56(3), 515-535.
Bridger, R., 2008, Introduction to ergonomics: Crc Press.
Bröde, P., Krüger, E. L., Rossi, F. A., & Fiala, D., 2012, Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil: International journal of biometeorology, 56(3), 471-480.
Burton, I., Ebi, K. L., & McGregor, G., 2009, Biometeorology for adaptation to climate variability and change: In Biometeorology for adaptation to climate variability and change (pp. 1-5). Springer, Dordrecht.
Buzan, J. R., & Huber, M., 2020, Moist heat stress on a hotter Earth: Annual Review of Earth and Planetary Sciences, 48(1).
Cui, T., Li, C., & Tian, F., 2021, Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau: Earth and Space Science, 8(7), e2020EA001620.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., ... & Williamson, M. S., 2019, Taking climate model evaluation to the next level: Nature Climate Change, 9(2), 102-110.
Fallah-Ghalhari, G., Shakeri, F., & Dadashi-Roudbari, A., 2019, Impacts of climate changes on the maximum and minimum temperature in Iran: Theoretical and Applied Climatology, 138(3-4), 1539-1562
 
Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G., 2012, UTCI-Fiala multi-node model of human heat transfer and temperature regulation: International journal of biometeorology, 56(3), 429-441.
Hong, J., Agustin, W., Yoon, S., & Park, J. S., 2022, Changes of extreme precipitation in the Philippines, projected from the CMIP6 multi-model ensemble: Weather and Climate Extremes, 37, 10048
Ibrahim, Y., Kershaw, T., Shepherd, P., & Elwy, I., 2021, A parametric optimisation study of urban geometry design to assess outdoor thermal comfort: Sustainable Cities and Society, 75, 103352.
Im, E. S., Pal, J. S., & Eltahir, E. A., 2017, Deadly heat waves projected in the densely populated agricultural regions of South Asia: Science advances, 3(8), e1603322.
IPCC, 2021, Climate change 2021: the physical science basis Working Group I Contribution to the Sixth Assessment Report (Cambridge University Press).
Jendritzky, G., de Dear, R., & Havenith, G., 2012, UTCI—why another thermal index?: International journal of biometeorology, 56(3), 421-428.
Katavoutas, G., & Founda, D. 2019, Intensification of thermal risk in Mediterranean climates: evidence from the comparison of rational and simple indices: International journal of biometeorology, 63(9), 1251-1264.
Khan, N., Shahid, S., Ismail, T., Ahmed, K., & Nawaz, N., 2019, Trends in heat wave related indices in Pakistan: Stochastic environmental research and risk assessment, 33(1), 287-302.
Knutti, R., 2010, The end of model democracy?: Climatic change, 102(3), 395-404.
Krzyżewska, A., Wereski, S., & Dobek, M., 2021, Summer UTCI variability in Poland in the twenty-first century: International Journal of Biometeorology, 65(9), 1497-1513.
Kumar, P., & Sharma, A., 2022, Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India: Materials Today: Proceedings, 61, 132-137.
Kumar, R., & Mishra, V., 2020, Increase in population exposure due to dry and wet extremes in India under a warming climate: Earth's Future, 8(12), e2020EF001731.
Lam, C. K. C., & Lau, K. K. L., 2018, Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong: International journal of biometeorology, 62(7), 1311-1324.
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M., 2016, The scenario model intercomparison project (ScenarioMIP) for CMIP6: Geoscientific Model Development, 9(9), 3461-3482.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., ... & Yang, D. Q., 2015, Elevation-dependent warming in mountain regions of the world: Nat Clim Change 5: 424–430.
Roshan, G., Almomenin, H. S., da Silveira Hirashima, S. Q., & Attia, S., 2019, Estimate of outdoor thermal comfort zones for different climatic regions of Iran: Urban Climate, 27, 8-23.
Sadeghi, M., 2022, The Impact of Greenery on Heat-Related Mortality in Sydney, Australia: In Urban Overheating: Heat Mitigation and the Impact on Health (pp. 181-195). Springer, Singapore.
Schär, C. 2016, The worst heat waves to come: Nature climate change, 6(2), 128-129.
Schwingshackl, C., Sillmann, J., Vicedo‐Cabrera, A. M., Sandstad, M., & Aunan, K., 2021, Heat stress indicators in CMIP6: estimating future trends and exceedances of impact‐relevant thresholds: Earth's Future, 9(3), e2020EF001885.
Shin, J. Y., Kang, M., & Kim, K. R., 2022, Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses: Science of The Total Environment, 805, 150132.
Silva, T. J. V., & Hirashima, S. Q. S., 2021, Predicting urban thermal comfort from calibrated UTCI assessment scale-A case study in Belo Horizonte city, southeastern Brazil: Urban Climate, 36, 100652.
Simath, S., & Emmanuel, R., 2022: Urban thermal comfort trends in Sri Lanka: the increasing overheating problem and its potential mitigation: International Journal of Biometeorology, 66(9), 1865-1876.
Staiger, H., Laschewski, G., & Matzarakis, A., 2019, Selection of appropriate thermal indices for applications in human biometeorological studies: Atmosphere, 10(1), 18.
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram: Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
Ullah, S., You, Q., Wang, G., Ullah, W., Sachindra, D. A., Yan, Y., ... & Jan, M. A., 2022: Characteristics of human thermal stress in South Asia during 1981–2019: Environmental Research Letters, 17(10), 104018.
Wang, S., Zhan, W., Du, H., Wang, C., Li, L., Jiang, S., ... & Huang, F. 2022, Identifying analogs of future thermal comfort under multiple projection scenarios in 352 Chinese cities: Sustainable Cities and Society, 82, 103889.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., ... & Best, M. 2011, Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century: Journal of Hydrometeorology, 12(5), 823-848.
Wehner, M., Gleckler, P., & Lee, J., 2020, Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation: Weather and Climate Extremes, 30, 100283.
WMO, 2021, State of the global climate 2020.
Xu, M., Hong, B., Jiang, R., An, L., & Zhang, T., 2019: Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China: Building and Environment, 155, 408-420.
Yan, Y., Xu, Y., & Yue, S., 2021, A high-spatial-resolution dataset of human thermal stress indices over South and East Asia: Scientific Data, 8(1), 1-14.
You, Q., Cai, Z., Wu, F., Jiang, Z., Pepin, N., & Shen, S. S., 2021, Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty: Climate Dynamics, 57(1), 17-35.
You, Q., Jiang, Z., Wang, D., Pepin, N., & Kang, S., 2018, Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations: Climate Dynamics, 51(1-2), 355-369.
Zare, S., Shirvan, H. E., Hemmatjo, R., Nadri, F., Jahani, Y., Jamshidzadeh, K., & Paydar, P., 2019, A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran: Weather and Climate Extremes, 26, 100213.
Zarrin, A., Dadashi-Roudbari, A., & Hassani, S., 2021, Historical variability and future changes in seasonal extreme temperature over Iran: Theoretical and Applied Climatology, 146(3), 1227-1248.
Zhang, J. T., Ren, G. Y., & You, Q. L., 2022, Detection and projection of climatic comfort changes in China mainland in a warming world: Advances in Climate Change Research.
Zolina, O., Simmer, C., Kapala, A., & Gulev, S. 2005, On the robustness of the estimates of centennial‐scale variability in heavy precipitation from station data over Europe: Geophysical Research Letters, 32(14).