شناسایی گسل مسبب زمینلرزه 21 اردیبهشت 1392 گوهران با استفاده از مکان‌یابی مجدد پس لرزهها و سازوکار کانونی آن

نوع مقاله : مقاله پژوهشی‌

نویسندگان

مؤسسه ژئوفیزیک دانشگاه تهران

چکیده

در ساعت 6:38 روز 21 اردیبشهت 1392 زمین‌لرزه‌ای به بزرگی 1/6 و به گزارش برخی مراکز دیگر 2/6 در مقیاس گشتاوری (Mw)، در نزدیکی روستایی به نام گوهران روی‌داد.روستای گوهران از توابع شهرستان بشاگرد واقع در استان هرمزگان می‌باشد. این زمین‌لرزه، پس‌لرزه‌های بزرگی را به دنبال داشت که بزرگ‌ترین آنها با بزرگی 8/5 ثبت شده است. در فاصله سه ماه بعد از رویداد اصلی توسط ایستگاه‌های لرزه‌نگاری کشوری، 284 پس‌لرزه ثبت و مکان‌یابی شده‌اند. در این پژوهش با استفاده از روش اختلاف زمانی دوگانه، مجدداً زمین‌لرزه‌ اصلی و پس‌لرزه‌های آن مکان‌یابی شدند که در طی این فرایند خطا نسبت به قبل بهینه شده و با استفاده از تحلیل مکانی و زمانی پس لرزه‌ها، راستای گسل مسبب اصلی این زمین‌لرزه با امتداد تقریبی جنوب ‌غرب-شمال ‌شرق شناسایی شد. همچنین با استفاده از روش وارون‌سازی تانسور گشتاور، سازوکارهای کانونی مربوط به این زمین‌لرزه و پس‌لرزه‌های بزرگ آن به دست آمد که با توجه به امتداد به دست آمده از توزیع پس‌لرزه‌ها، صفحه اصلی از صفحه کمکی تشخیص داده شد. در نهایت با تلفیق این دو نتیجه گسل مسبب اصلی با مولفه امتدادلغز چپ‌گرد با شیب تقریبا قائم شناسایی شد. تطبیق نتایج زمین‌شناختی با نتایج این پژوهش نشان می‌دهد که این زمین‌لرزه تحت تأثیر عملکرد گسل ناشناخته است که تاکنون در نقشه‌ها مشاهده نشده و بعد از وقوع این زمین‌لرزه آشکار شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying causative fault of 11th May 2013 Goharan Earthquake using relocation of aftershocks and focal mechanisms

نویسندگان [English]

  • Majid Reza Azadfar
  • Mohammad Reza Gheitanchi
چکیده [English]

On the 11thMay 2013 at 2:08:08 GMT, a moderate earthquake (Mw=6.2) occurred in Hormozgan province, near the Goharan village (southeast Iran). The largest aftershock of magnitude 5.8 occurred on 12th May 2013 at 12:07:02 GMT near the mainshock, which produced more destruction. According to the reports, one person died and 17 people injured. This earthquake is the first noticeable recorded event in this area. By this time,the most important seismic activity had occurred in 1983 with magnitude Ms=5.7 (ISC). Aftershock sequences provide valuable information about the Earth’s crust and source properties of large earthquakes. This is because a large number of events occur during a short time in a small area. This earthquake had a lot of aftershocks, after 3 months Iranian seismological center (IRSC) recorded 284 events.     Generally, initial location of earthquakes produce inevitable error because of algorithms we use to locate earthquakes. But this error will be decreased by relocating. One of the most common methods used is double-difference algorithm developed by Felix Waldhauser (2000). The double-difference is one of the relative earthquake location methods in these methods, effects of errors produced by deviation from real structure velocity model can also be minimized. According to the theory of double-difference, if the hypocentral separation between two earthquakes is small (compared to the event station distance and the scale length of the velocity heterogeneity), then the ray paths between the two sources and a common station are similar along the entire ray path. In this case, the difference in travel times for two events observed at one station can be related to the spatial offset between the events with high accuracy.     Previous studies have shown that the direction of causative fault (related to mainshock) can be obtained by the distribution of aftershocks, but it does not exactly assess motion on the fault occurred during the earthquake. So obtaining focal mechanism of the mainshock and largest aftershocks could help us to solve this important problaluablem. There are some methods to obtain focal mechanism and one of the most powerful methods is moment tensor inversion. This method has developed for a local earthquake by Zahradnik et al (2005).  This algorithm has been written in Fortran language programing named ISOLA. The ISOLA GUI has been created using the Matlab GUIDE tool.ISOLA is based on multiple point-source representation and iterative deconvolution method, similar to what Kikuchi and Kanamori (1991) have done for teleseismic records, but here the full wavefield is considered, and Green's functions are calculated by the discrete wavenumber method of Bouchon (1981). Thus, the method is applicable to regional and local events.    In this study, we use double-difference algorithm to relocate the mainshock and aftershocks of this earthquake. During this process, the error of location improved (compare to initial location). By using spatial-temporal analyse of aftershock sequence we derived that the causative fault of this earthquake is in an east-west direction. All the aftershocks are distributed in the area with length 40 km and width 25 km, but the most of them are being in a cluster with length 15 km and width 10 km. We determined the focal mechanisms of this earthquake, and 15 other large aftershocks by moment tensor inversion method (Isola software) and the results show that all of the events have a predominatinely strike-slip mechanism.  According to the distribution of the aftershocks we determined, fault plane is distinguished from the nodal plane. The fault plane is a left-lateral strike-slip in the SW-NE direction. According to the Geological evidence, this earthquake  is related to the unknown fault in this region, but topographic map shows that probably this earthquake is related to linear structure parallel to aftershocks distribution and the fault plane that obtained in this study using CMT(Centroid Moment Tensor) method.

کلیدواژه‌ها [English]

  • Goharan earthquake
  • double difference
  • moment tensor inversion
  • left-lateral strike slip fault
آقانباتی، ع.، 1386، زمین شناسی ایران: سازمان زمین شناسی و اکتشافات معدنی ایران.
بلورچی، م.ج.، انصاری مقدم، ف.، درزاده ،ح.، 1392، گزارش فوری - مقدماتی زمین لرزه بشاگرد استان هرمزگان: سازمان زمین شناسی و اکتشافات معدنی ایران.
پاکزاد، م.، میرزایی، ن.، 1386، بررسی سازوکار کانونی زلزله 11 فروردین 1385 درب آستانه سیلاخور: مجله فیزیک زمین و فضا، 33(3)، 73-86.
Antonijevic, S. K., Arroucau, P., and Vlahovic, V., 2013, Seismotectonic model of the Kraljevo 3 November 2010 Mw 5.4 earthquake sequence: Seismological Research Letters, 84(4), 600-611.
Bouchon, M., 1981, A simple method to calculate Green's functions for elastic layered media: Bulletin of the Seismological Society of America, 71(4), 959-971.
Byrne, D. E., Sykes, L. R., and Davis, D. M., 1992, Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone: J. Geophys. Res., 97, 449-478.
Geiger, L., 1912, Probability method for the determination of earthquake epicenters from the arrival time only: Bull. St. Louis Univ, 8(1), 56-71.
Hessami, K., and Jamali, F., 1996, Active faulting in Iran: J. Earthquake Prediction Research, 5(3), 403-412.
Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bulletin of the Seismological Society of America, 72(2), 491-506.
Stöcklin, J., 1974, Northern Iran: Alborz Mountains: J. the Geological Society, London, 4(1), 213-234.
Waldhauser, F., 2001, hypoDD: A computer program to compute double-difference earthquake locations: USGS Open File Rep.
Waldhauser, F., and Ellsworth, W. L., 2000, A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California: Bulletin of the Seismological Society of America, 90(6), 1353-1368.
Zahradník, J., Serpetsidaki, A., Sokos, E., and Tselentis, G. A., 2005, Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada earthquake, Greece: Bulletin of the Seismological Society of America, 95(1), 159-172.