تأثیر گذار برون‌حاره‌ای چرخند چاپالا بر توسعه سامانه‌های جوّی عرض‌های میانی: توسعه و پشته‌زایی بر روی جریان جتی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 موسسه ژئوفیزیک دانشگاه تهران

2 مؤسسه ژئوفیزیک دانشگاه تهران

چکیده

چرخند حاره‌ای چاپالا بعد از توفان گونو دومین توفان حاره‌ای قوی منطقه شمالی اقیانوس هند بوده است. در خصوص توفان گونو باید گفت که این توفان تأثیر مستقیم بر بارش سواحل جنوب شرقی ایران داشته است، حال آنکه هدف پژوهش حاضر بررسی تأثیر غیرمستقیم توفان چاپالا در بارش‌های بسیار شدید غرب ایران است. همچنین این موضوع مورد مطالعه قرار گرفته است که آیا این تأثیر غیرمستقیم به دلیل گذار برون­حاره‌ای توفان از طریق شبه‌جزیره عربستان و توسعه جریان جتی عرض­های میانی است؟ برای رسیدن به این هدف، شبیه‌سازی‌هایی مبتنی بر مدل عددی WRF انجام شده و مسیر حرکت بسته هوای نمونه فرضی نیز با استفاده از مدل ناپایای HYSPLIT مورد بررسی قرار گرفته است. نتایج حاصل به­روشنی انتقال جرم و انرژی از سطوح پایین وردسپهر عرض‌های حاره‌ای به سطوح بالای وردسپهر در عرض‌های میانی را نشان می‌دهد.
 نحوه تأثیر این چرخند حاره‌ای بر سامانه‌های فعال در عرض‌های میانی شامل جدا شدن مقادیر کوچک تاوایی پتانسیلی از مرکز چرخند چاپالا و صعود آن بر روی خط هم­دمای پتانسیلی 320 کلوین تا منطقه وردایست در عرض‌های میانی، انتقال جرم به­صورت رطوبت نسبی بر روی صحرای خشک شبه­جزیره عربستان از مرز منطقه کژفشاری و حاره‌ای با همرفت مورّب و همچنین افزایش سرعت مرکز جت و جابه­جایی آن به عرض‌های جغرافیایی شمالی‌تر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

The extratropical transition of the Cyclone Chapala and its impact on the Mid latitude weather systems: ridge development over the Jet Stream

نویسندگان [English]

  • Mahmoud Safar 1
  • Sarmad Ghader 1
  • Farhang Ahmadi-Givi 2
  • Alireza Mohebalhojeh 2
  • Majid Mazraeh-Farahani 2
1 Institute of Geophysics, University of Tehran
2 Institute of Geophysics, University of Tehran
چکیده [English]

The cyclone Chapala was the second strongest tropical cyclone among the cyclones that has been formed and recorded over the Arabian Sea. On October 28, 2015, the cyclone Chapala developed over western India from the monsoon trough. After reaching its peak intensity on October 30, 2015, it started to move toward the Yemeni island of Socotra. Then, on November 2, 2015, the cyclone entered the Gulf of Aden and became the strongest cyclone ever developed in that water area. The cyclone Chapala was finally decayed on November 4, 2015.
The present work is devoted to the study of the extratropical transition of the cyclone Chapala and its impact on the development of mid-latitude disturbances and, in particular, the jet stream over the western part of Iran. In fact, the main objective of the current work is to find out whether there is any link between the extreme rainfall over western Iran and the cyclone Chapala via the extratropical transition of the cyclone and its impact on the development of mid-latitude weather systems including the jet stream. To this end, the Weather Research and Forecasting (WRF) model is used to simulate the cyclone Chapala during its lifetime from the development stage to the decay stage. The advanced research WRF model is a fully compressible, non-hydrostatic mesoscale numerical weather prediction model. This model has been developed at National Center for Atmospheric Research (NCAR). For the ARW dynamical core, an Arakawa-C horizontal grid is used, and for temporal integration of governing equations, a Runge–Kutta scheme with a smaller time step for fast waves (such as sound waves) is used. The WRF model simulations are performed for the period 1 to 11 November 2015. To perform the WRF model simulations, the NCEP FNL (Final) Operational Global Analysis data, which are available operationally every six hours, are used to prepare the initial and lateral boundary conditions. In this study, the ARW dynamical core of the WRF model is used. The WRF model is configured with one nest and 45 km horizontal grid resolution in a Lambert projection. The computational domain of the WRF model covers Iran, the Persian Gulf, the Oman Sea and the Arabian Sea. In addition, the following physical parametrizations are used: the WSM3 scheme for the microphysics, the RRTM scheme for the longwave radiation, the Dudhia scheme for the shortwave radiation, the MM5 method for the surface layer, the Noah method for the land surface, the YSU scheme for the planetary boundary layer, and the Kain–Fritsch scheme for the cumulus convection. Further, to simulate the air parcel trajectories, the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) is used. The HYSPLIT model can be used for numerical simulation of air parcel trajectories as well as the complex transport, dispersion, chemical transformation, and deposition simulations. Here, the HYSPLIT is coupled with the WRF model to carry out forward and backward simulations of air parcel trajectories over Iran during the period of the activity of the cyclone Chapala.
The diagnostics like potential vorticity, as computed and presented based on the WRF numerical model results and the air parcel trajectory simulations by the HYSPLIT model, point to a clear transfer of mass and energy from the tropical lower troposphere to the upper troposphere in midlatitudes during the extratropical transition of the cyclone Chapala. The marked effect of the cyclone on the weather systems leading to the extreme precipitation in the southwest of Iran is confirmed.

کلیدواژه‌ها [English]

  • Tropical Cyclone
  • jet stream
  • potential vorticity
  • WRF Model
احمدی‌گیوی، ف؛ ایران‌نژاد، پ.، و محمد‌نژاد، ع.، 1389، اثر پرفشار‌های جنب­حاره و سیبری بر خشک‌سالی‌های غرب ایران: چهاردهمین کنفرانس ژئوفیزیک ایران، تهران، 21-23 اردیبهشت.
گلشنی، ع.، و تائبی، س.، 1387، مدل‌سازی عددی توفان حاره­ای گونو و امواج ناشی از آن در دریای عمان: نشریه مهندسی دریا، 4، 8، 34-25.
لشکری، ع.، و محمدی، ز.، 1393، اثر موقعیت استقرار پرفشار جنب­حاره­ای عربستان بر سامانه‌های بارشی در جنوب و جنوب غرب ایران: پژوهش‌های جغرافیایی طبیعی، 47، 1، 90-73.
مشهدی، ل.، حاجی­زاده ذاکر، ن.، سلطان‌پور، م.، و مقیمی، س.، 1392، شبیه‌سازی عددی امواج و مد ناشی از توفان گونو در خلیج چابهار: نشریه مهندسی دریا، 9، 17، 50-37.
Agusti-Panareda, A., Thorncroft, C. D., Craig, G. C., and Gray, S .L., 2004, The extratropical transition of hurricane Irene (1999): A potential-vorticity perspective: :  Quarterly Journal of the Royal Meteorological Society, 130, 1047–1074.
Atallah, E. H. and Bosart, L. F., 2003, The extratropical transition and precipitation distribution of hurricane Floyd (1999): Monthly Weather Review, 131, 1063–1081.
Challa, V. S., Indrcanti, J., Baham, J. M., Patrick, C., Rabarison, M. K., Young, J. H., Hughes, R., Swanier, S. J., Hardy, M. G., and Yerramilli, A., 2008, Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model: Environmental Fluid Mechanics, 8, 367–387.
DiMego, G. J., and Bosart, L. F., 1982a, The transformation of tropical storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations: Monthly Weather Review, 110, 385–411.
DiMego, G. J., and Bosart, L. F., 1982b, The transformation of tropical storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity, and kinetic energy budgets: Monthly Weather Review, 110, 412–433.
Draxler, R. R., and Taylor, A. D., 1982, Horizontal dispersion parameters for long-range transport modeling: Journal of Applied Meteorology and Climatology, 21, 367–372.
Draxler, R. R., and Stunder, B. J. B., 1988, Modeling the CAPTEX vertical tracer concentration profiles:  Journal of Applied Meteorology and Climatology, 27, 617–625.
Draxler, R. R., 1990, The calculation of low-level winds from the archived data of a regional primitive equation model Journal of Applied Meteorology and Climatology, 29, 240-248.
Draxler, R. R., 1992, Hybrid single-particle Lagrangian integrated trajectories (HY-SPLIT). Version 3.0, User’s guide and model description: NOAA Technical Memorandum ERL ARL-195, 26 pp.
Draxler, R. R., 1996, Trajectory optimization for balloon flight planning: Weather and Forecasting, 11, 111–114.
Draxler, R. R., and Hess, G. D., 1997, Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224: NOAA Air Resources Laboratory, Silver Spring, MD, 24 pp.
Draxler R. R., Jean, M., Hicks, B., and Randerson, D., 1997, Emergency preparedness-regional specialized meteorological centers at Washington and Montreal: Radiation Protection Dosimetry, 73(1-4), 27–30.
Draxler, R. R., and Hess, G. D., 1998, An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition:  Australian Meteorological Magazine, 47, 295–308.
Draxler, R. R., 1999, HYSPLIT4 user's guide. NOAA Technical Memorandum ERL ARL-230. NOAA Air Resources Laboratory, Silver Spring, MD.
Draxler, R. R., and Hess, G. D., 2004, Description of the HYSPLIT_4 modeling system. NOAA Technical Memorandum ERL ARL-224. NOAA Air Resources Laboratory, 25 pp.
Draxler, R. R., 2006, The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington DC.: Weather and Forecasting , 21, 383–394.
Farahani, M. M., Khansalari, S., and Azadi, M., 2016, Evaluation of helicity generation in the tropical storm Gonu: Meteorology and Atmospheric Physics, doi:10.1007/s00703-016-0465-x.
Foley, G. R., and Hanstrum, B. N., 1994, The capture of tropical cyclones by cold fronts off the west coast of Australia: Weather and Forecasting , 9, 577–592.
Ghader, S., Yazgi, D, Haghshenas, S. A., Razavi Arab, A., Jedari Attari, M., Bakhtiari, A., and Zinaszboroujerdi, H., 2016, Hindcasting tropical storm events in the Oman Sea: Journal of Coastal Research, 75, 1087–1091.
Grams, C. M., Jones, S. C., Davis, C. A., Harr, P. A., and Weissmann, M., 2013, The impact of typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridge building and modification of the jet:  Quarterly Journal of the Royal Meteorological Society , 139, 2148–2164.
Harr, P. A., and Elsberry, R. L., 2000, Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process: Monthly Weather Review, 128, 2613–2633.
Harr, P. A., Elsberry, R. L., and Hogan, T. F., 2000, Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics: Monthly Weather Review, 128, 2634–2653.
Harr, P., and Dea, J., 2009, Downstream development associated with the extratropical transition of tropical cyclones over the Western North PacificMonthly Weather Review, 137, 1295–1319.
Hart, R. E., and Evans, J. L., 2001, A climatology of extratropical transition of Atlantic tropical cyclones: Journal of Climate, 14, 546–564.
India Meteorological Department, Cyclone Warning Division, 2015, Extremely Severe Cyclonic Storm, CHAPALA over the Arabian Sea (28 October – 4 November, 2015): A Report.
Klein, P. M., Harr, P. A., and Elsberry, R. L., 2000, Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage: Weather and Forecasting , 15, 373–396.
Klein, P. M., Harr, P. A., and Elsberry, R. L., 2002, Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification: : Monthly Weather Review, 130, 2240–2259.
Lo, J. C. F., Yang, Z. L., and Pielke Sr, R. A., 2008, Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model: Journal of Geophysical Research, 113, D09112.
McTaggart-Cowan, R., Gyakum, J. R., and Yau, M. K., 2001, Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions: Hurricane Earl case study: Monthly Weather Review,129, 1617–1636.
McTaggart-Cowan, R., Gyakum, J. R., and Yau, M. K., 2004, The impact of tropical remnants on extratropical cyclogenesis: Case study of hurricane Danielle and Earl (1998): Monthly Weather Review, 132, 1933–1951.
Sekioka, M., 1956, A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes. I: Synoptic structure of typhoon Marie over the Japan Sea: Journal of the Royal Meteorological Society  Japan, 34, 42–53.
Sinclair, M. R., 2002, Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes: Monthly Weather Review, 130, 590–609.
Thorncroft, C., and Jones, S. C., 2000, The extratropical transitions of Hurricanes Felix and Iris in 1995: Monthly Weather Review, 128, 947–972.
Torn, R. D., 2010, Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts: Journal of the Atmospheric Sciences,67, 817–833.