بررسی برهم‌کنش مکانیکی بین زمین‌لرزه‌های بزرگ شمال غرب ایران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 استادیار، دانشکده عمران، دانشگاه تبریز، تبریز، ایران

2 دانشجوی کارشناسی ارشد ژئودزی، دانشگاه تبریز، تبریز، ایران

چکیده

بشر از دیرباز با پدیده‌های مخرب طبیعی ازجمله زمین­لرزه روبه‌رو بوده است. آگاهی از زمان و مکان رخداد زمین‌لرزه­های بزرگ جهت هشدار دادن قبل از رخداد زمین‌لرزه ضروری است. از بررسی تغییرات تنش در پوسته زمین می‌‌توان در برآورد احتمال وقوع زمین­لرزه بهره برد. تحلیل تغییرات تنش کولمب در بسیاری از مناطق لرزه‌خیز جهان نشان می‌دهد که در بیشتر موارد، مکان رخداد زمین‌لرزه­های بعدی از تغییرات تنش کولمب ناشی از زمین‌لرزه­های قبلی در آن منطقه متأثر است. در این تحقیق به‌منظور بررسی مکان احتمالی رخداد زمین‌لرزه­های بزرگ، تغییرات تنش کولمب همالرز 29 زمین‌لرزه‌ تاریخی و دستگاهی با بزرگای بیشتر از 5/5 در بخش شمال غربی ایران به‌ترتیب تاریخی محاسبه شد. بررسی برهم­کنش مکانیکی بین زمین‌لرزه­ها، وجود ارتباط مکانی بین آنها را برای حدود 65 درصد از رویدادها نشان می­دهد. همچنین برای آگاهی از اینکه در کدام قسمت از منطقه مورد مطالعه خطر لرزه‌ای ممکن است احتمال بیشتری داشته باشد، تغییرات تنش کولمب تجمعی ناشی از تغییرشکل­های هما‌لرز روی صفحات گسلی راستالغز و شیب­لغز با هندسه بهینه محاسبه شد. نتایج این محاسبات نشان داد مناطق پرخطر و محتمل برای ایجاد زمین‌لرزه‌های بزرگ بعدی، مناطقی هستند که در محدوده افزایش تنش کولمب هما‌لرز زمین‌لرزه­های پیشین واقع هستند و گسل فعالی هم‌جهت با جهت­های بهینه شکست­های راستالغز و شیب­لغز دارند. این مناطق برای گسل­های راستالغز عبارت‌اند از: قسمت جنوب شرقی گسل شمال تبریز (بستان­آباد)؛ قسمت شمالی گسلش ناشی از زمین‌لرزه سال 1843 از گسل ماکو؛ قسمت جنوبی گسلش ناشی از زمین‌لرزه سال 1840. برای گسل‌های شیب­لغز نیز این مناطق عبارت‌اند از: گسل شیب­لغز تسوج، بین گسلش ناشی از‌‌ زمین‌لرزه­های سال­های 1807 و 1857‌؛ گسل شیب­لغز میشو؛ قسمت جنوبی گسلش ناشی از زمین‌لرزه سال 1844 از گسل بزقوش؛ قسمت شمالی گسلش ناشی از زمین‌لرزه سال 1879 از گسل بزقوش.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the mechanical interaction among large earthquakes in NW Iran

نویسندگان [English]

  • Asghar Rastbood 1
  • Babak Shahandeh 2
  • Mehdi Mohammad-Zadeh 2
1 Assistant Professor, Civil Engineering Faculty, University of Tabriz, Tabriz, Iran
2 M.Sc. Student, Civil Engineering Faculty, University of Tabriz, Tabriz, Iran
چکیده [English]

Mankind has long been faced with natural destructive phenomena, including earthquakes. Awareness of the time and place of major earthquakes is essential to warn before occurring an earthquake in order to reduce human and financial losses. At present, it may not be possible to predict the exact time of future earthquakes, but to some extent, by studying the data of past earthquakes, high-risk areas with high seismic potential can be identified, and knowledge of these high-risk areas can reduce the damage caused by earthquakes in these regions. The study of stress changes in the earth's crust can be used to estimate the probability of an earthquake. Coulomb stress change analysis has been used in many seismic regions of the world. These studies show that in most cases, the location of subsequent earthquakes is affected by changes in the Coulomb stress caused by previous earthquakes in that region. In this study, in order to investigate the possible location of large earthquakes, Coulomb stress changes of 29 historical earthquakes and one instrumental earthquake magnitude greater than 5.5 in NW Iran were calculated. The study of mechanical interaction among earthquakes shows the spatial relationship between them in some events. For example, Coulomb stress change caused by the historical earthquake of 858 AD on the NTF, led to the rupture of its adjacent part in 1042 AD. The 1042 earthquake ruptured a large part of the NTF and increased the stress on the west side on the 1273 faulting plane. The next event in this sequence was the 1304 earthquake in the NTF, which was located at the region of the increase in the Coulomb stress caused by the previous earthquakes. The 1641 earthquake occurred in Dehkharqan region of Tabriz due to the increase in the stress of the fault system events in the NTF.
    In order to know about the areas that have highest probability, we compute the cumulative Coulomb stress change caused by the co-seismic deformation of earthquakes on strike-slip and dip-slip faults with optimal geometry. The results of these estimations show that the high-risk and probable areas for causing the next large earthquakes in the region Coulomb stress change increase due to previous earthquakes and have active faults in the direction of optimal strike-slip and dip-slip fractures. These areas for strike-slip faults are: the southeastern part of the NTF (Bostan-abad), the northern part of the faulting caused by the 1843 earthquake from the Maku fault and the southern part of the faulting caused by the 1840 earthquake. The areas for dip-slip faults are: Tasuj fault, between faultings caused by the earthquakes of 1807 and 1857, Mishu fault, the southern part of the faulting caused by the 1844 earthquake from Bozqush fault and the northern part of the faulting due to the 1879 earthquake from Bozghush fault.

کلیدواژه‌ها [English]

  • Coulomb stress changes
  • mechanical interaction
  • active fault
  • earthquake
  • dislocation
  • NW Iran
Afra, M., Moradi, A., and Pakzad, M., 2017, Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms: Journal of Geodynamics, 111, 50–60.
Ahadov, B., and Jin, S., 2019, Effects of Coulomb stress change on Mw ≥ 6 earthquakes in the Caucasus: Physics of the Earth and Planetary Interiors, 297, 1-12.
Aki, K., and Richards, P. G., 2002, Quantitative Seismology: University Science Books, ISBN: 0935702962.
Ali, S. T., Freed, A. M., Calais, E., Manaker, D. M., and McCann, W. R., 2008, Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation, 174, 904–918.
Ambraseys, N., and Melville, C., 1982, A History of Persian Earthquakes: Cambridge University Press, Cambridge.
Berberian, M., 1994, Natural hazards and the first earthquake catalogue of Iran, Vol. 1: Historical hazards in Iran prior to 1900: International Institute of Earthquake Engineering and Seismology (IIEES), 603 pp.
Bing, Y., Shinji, T., and Aiming, L., 2016, Coulomb stress evolution history as implication on the pattern of strong earthquakes along the Xianshuihe-Xiaojiang fault system, China: Journal of Earth Science, 29(2), 427–440.
Gahalaut, V. K., 2009, Coulomb stress change due to 2005 Kashmir earthquake and implications for future seismic hazards: Journal of Seismology, 13(3), 379–386.
Ganas, A., Sokos, E., Agalos, A., Leontakianakos, G., and Pavlides, S., 2006, Coulomb stress triggering of earthquakes along the Atalanti Fault, central Greece: Two April 1894 M6+ events and stress change patterns: Tectonophysics, 420, 357–369.
Ghimire, S., Katsumata, K., and Kasahara, M., 2008, Spatio-temporal evolution of Coulomb stress in the Pacific slab inverted from the seismicity rate change and its tectonic interpretation in Hokkaido, Northern Japan: Tectonophysics, 455, 25-42.
Görgün, E., 2014, Source characteristics and
 
      Coulomb stress change of the 19 May 2011 Mw 6.0 Simav–Kütahya earthquake, Turkey: Journal of Asian Earth Sciences, 87, 79-88.
Harris, R. A., and Simpson, R. W., 1992, Changes in static stress on southern California faults after the 1992 Landers earthquake: Nature, 360, 251-254.
Hessami, K., Jamali, F., and Tabassi, H., 2003, Major active faults of Iran: IIEES, Tehran.
Ishibe, T., Satake, K., Sakai, S., Shimazaki, K., Tsuruoka, H., Yokota, Y., Nakagawa, S., and Hirata, N., 2015, Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto, Japan: Geophysical Journal International, 201, 112–134.
Jackson, J. A., Haines, A. J., and Holt, W. E., 1995, The accommodation of Arabia-Eurasia plate convergence in Iran: Journal of Geophysical Research, 100, 15205-15209.
King, G. C. P., Stein, R. S., and Lin, J., 1994, Static stress changes and the triggering of earthquakes: Bulletin of the Seismological Society of America, 84(3), 935-953.
Kusumawati, D., Sahara, D. P., Nugraha, A. D., and Puspito, N. T., 2019, Sensitivity of static Coulomb stress change in relation to source fault geometry and regional stress magnitude: case study of the 2016 Pidie Jaya, Aceh earthquake (Mw=6.5), Indonesia: Journal of Seismology, https://doi.org/10.1007/s10950-019-09878-3.
Mahesh, N., Shrivastava and Reddy, C. D., 2013, The Mw 8.6 Indian Ocean earthquake on 11 April 2012: coseismic displacement, Coulomb stress change and aftershocks pattern: Journal of the Geological Society of India, 81, 813-820.
Mirzaei, N., Gao, M., and Chen, Y. T., 1997, Evaluation of uncertainty of earthquake parameters for the purpose of seismic zoning of Iran: Earthquake Research in China, 11, 197-212.
Nalbant, S. S., Baraka, A. A., and Alptekin, O., 1996, Failure stress change caused by the 1992 Erzincan earthquake (Ms=6.8): Geophysical Research Letters, 23(13), 1561-1564.
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space: Bulletin of the Seismological Society of America, 75(4), 1135-1154.
Otsubo, M., and Yamaji, A., 2006, Improved resolution of the multiple inverse method by eliminating erroneous solutions: Computers & Geosciences, 32(8), 1221–1227.
Otsubo, M., Yamaji, A., Kubo, A., 2008, Determination of stresses from heterogeneous focal mechanism data: an adaptation of the multiple inverse method: Tectonophysics 457(3–4), 150–160.
Segall, P., 2010, Earthquake and Volcano Deformation: Princeton University Press, 456 pp, ISBN: 9780691133027.
Serpelloni, E., Anderlini, L., and Belardinelli, M. E., 2012, Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements: Geophysical Journal International, 188, 473–489.
Shan, B., Xiong Xiong, X., Zheng, Y., Wei, S., Wen, Y., Jin, B., and Ge, C., 2011, The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China earthquake: Tectonophysics, 510, 345–353.
Smith, B., and Sandwell, D., 2003, Coulomb stress accumulation along the San Andreas Fault System: Journal of Geophysical Research, 108, B6, 2296, doi:10.1029/2002JB002136.
Smith, B. R., and Sandwell, D. T., 2006, A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years: Journal of Geophysical Research, 111, B01405, doi:10.1029/2005JB003703.
Stein, R. S., Barka, A. A., and Dieterich, J. H., 1997, Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering: Geophysical Journal International, 128, 594-604.
Toda, S., Stein, R. S., Richards-Dringer, K., and Bozkurt, S., 2005, Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer: Journal of Geophysical Research, 110, B05S16.
Vavrycuk, V., 2014, Iterative joint inversion for stress and fault orientations from focal mechanisms: Geophysical Journal International, 199, 69–77.
Verdecchia, A., and Carena, S., 2016, Coulomb stress evolution in a diffuse plate boundary: 1400 years of earthquakes in eastern California and western Nevada, USA: Tectonics, 35(8), 1793-1811.
Wang, R., Lorenzo-Martín, F., and Roth, F., 2006, PSGRN/PSCMP-a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory: Computers & Geosciences, 32(4), 527-541.
Wang, J., Xu, C., Freymueller, J. T., Li, Z., and Shen, W., 2014, Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake: Journal of Geophysical Research, Solid Earth, 119, doi:10.1002/2012JB009860.
Wells, D. L., and Coppersmith, K. J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement: Bulletin of the Seismology Society of America, 84, 974–1002.
Xu, Q., Chen, Q., Zhao, J., Liu, X., Yang, Y., Zhang, Y., and Liu, G., 2020, Sequential modeling of the 2016 Central Italy earthquake cluster using multi-source satellite observations and quantitative assessment of Coulomb stress change: Geophysical Journal International, 221(1),451-466.
Yamaji, A., 2000, The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data: Journal of Structural Geology, 22(7), 441–452.
Yamaji, A., and Sato, K., 2006, Distances for the solutions of stress tensor inversion in relation to misfit angles that accompany the solutions: Geophysical Journal International, 167(2), 933–942.
Yang, Y., Chen, Q., Xu, Q., Liu, G., and Hu, J. C., 2018, Source model and Coulomb stress change of the 2015 Mw 7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations: Journal of Geodesy, https://doi.org/10.1007/s00190-018-1164-9.
Zhan, Z., Jin, B., Wei, S., and Graves, R. W., 2011, Coulomb stress change sensitivity due to variability in mainshock source models and receiving fault parameters: a case study of the 2010–2011 Christchurch, New Zealand, earthquakes: Seismological Research Letters, 82(6), 800-814.
Zhang, Q. W., Zhang, P. Z., Wang, C., Wang, Y. P., and Ellis, M. A., 2003, Earthquake triggering and delaying caused by fault interaction on Xianshuihe fault belt, southwestern China: Acta Seismologica Sinica, 16(2), 156-165.
Zhou, Z., Kusky, T. M., and Tang, C. C., 2019, Coulomb stress change pattern and aftershock distributions associated with a blind low-angle megathrust fault, Nepalese Himalaya: Tectonophysics, 767, 1-10.