سوپرامولکول‌ها و تأثیر تابش‌های خورشیدی ریزموج بر یون‌سپهر در به‌وجود‌آمدن خوشه‌های بخار آب

نوع مقاله : مقاله مروری‌

نویسندگان

1 دانشجوی دکتری فیزیک پلاسما، دانشکده فیزیک، دانشگاه یزد، یزد، ایران

2 دانشیار، دانشکده فیزیک، دانشگاه یزد، ایران

3 استادیار، دانشکده فیزیک، دانشگاه یزد و گروه پژوهشی فوتونیک، آزمایشگاه تحقیقاتی بیناب‌نگاری لیزری، دانشگاه یزد، یزد، ایران

چکیده

گرمایش جهانی و تغییر اقلیم، سبب توجه بیشتر مجامع علمی به بحران­های آتیِ ناشی از خشکسالی و تغییر شرایط آب‌وهوایی در مناطق مختلف جهان شده است. یکی از چالش­های مورد توجه در عصر حاضر، بررسی عوامل مؤثر بر تغییر اقلیم است. یون‌سپهر، شار بادهای خورشیدی و طوفان‌های مغناطیسی را جذب می­کند و این موضوع باعث انتشار تابش­های ریزموج از یون­سپهر به سمت وردسپهر می­شود. تابش­های ریزموج ناشی از یون­سپهر که در محدوده EHF، SHF و UHF هستند، بر وردسپهر مؤثرند و سبب تغییر در اقلیم و وضع هوا می­شوند. پژوهش حاضر مبتنی بر تحریک حالت­های ریدبرگ در اتم­ها و مولکول­هایی است که تحت تأثیر تابش­های خورشیدی قرار دارند. این تابش‌ها به‌دلیل ایجاد حالت‌های برانگیخته ریدبرگ با کاهش جداسازی یون­های خوشه‌ای در جوّ پایین همراه هستند. میزان خوشه­های بخار آب به‌شدت به عدد کوانتومی اوربیتال­های ریدبرگ  وابسته است. احتمال تفکیک یون­های خوشه‌ای برای اعداد کوانتومی مداری بزرگ، کاهش و برای مقادیر کوچک، افزایش می­یابد. تابش­های ریزموج بر خوشه­بندی و غلظت بخار آب تأثیر می­گذارند و سبب افزایش غلظت خوشه­های بخار آب در وردسپهر می‌شوند. در چارچوب فیزیک سوپرامولکول­ها، الکترون از تمام حالت‌های ریدبرگ عبور می‌کند و احتمال ورود الکترون به عمق هسته را کاهش می‌دهد؛ بنابراین احتمال جدایی خوشه­های تشکیل­شده به‌شدت کاهش می‌یابد و در نهایت، به­واسطه تجمع مولکولی در حالت­های ریدبرگ، سبب تشکیل سوپرامولکول­ها و رشد تراکم خوشه­هایی از بخار آب در وردسپهر در قالب یک ابر جوان با تراکم کمتر از 3-cm 15-10 می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Supramolecular and the effect of microwave solar radiation on the ionosphere in the formation of water vapor clusters

نویسندگان [English]

  • Banafsheh Taji 1
  • Mohammad Hossein Memarian 2
  • Mohammad Ali Haddad 3
1 Ph.D. Student, Department of Physics, Faculty of Science, Yazd University, Yazd, Iran
2 Associate Professor, Department of Physics, Faculty of Science, Yazd University, Yazd, Iran
3 Assistant Professor, Department of Physics, Faculty of Science, Yazd University and Photonics Research Group, Laser Spectroscopy Research Laboratory, Yazd, University, Yazd, Iran
چکیده [English]

Drought and regime changes in precipitation and cloudy changes due to climate change and global warming in many world regions have been considered by scientific communities. The impact of solar activities on atmospheric processes, such as solar radiation, sunspots, solar flares, magnetic storms and other cosmic rays, geophysical phenomena on climate change and global warming, is one of the significant issues. Many studies have been conducted to evaluate the role and influence of the Sun and galactic cosmic rays (GCRs) on global warming. The fluctuation of geomagnetic activity is accompanied by solar activity, which includes the transfer of electrons and protons from the earth's radiation belts to the ionosphere. This hypothesis is based on the excitation of Rydberg states of atoms and molecules irradiated by solar radiation. A Rydberg atom is an excited atom that has one or more electrons with very high principal quantum numbers, n. The high electric dipole moment of Rydberg systems is a distinguishing characteristic of these systems. The large dipole moment of Rydberg atoms causes a strong interaction of dipole-dipole radiation in the system. The orientation of two molecules that have a large dipole moment with each other induces dipole-dipole interaction.
    The ionosphere totally absorbs magnetic storm and solar wind energy fluxes in the UHF, SHF, and EHF bands, resulting in microwave emissions. In a lower atmosphere, this event reduces the separation of the cluster ions. The amount of created water clusters is highly dependent on the orbital quantum number of Rydberg states with the values of (n≥10). In other words, the probability of cluster ion separation is lower for higher-orbital quantum numbers than for smaller quantum numbers. The effect of microwave irradiation on clustering, water vapor concentration, and the generation of thin and young clouds are investigated in this research. It will be explained that such radiations easily penetrate the ionosphere and induce aggregation of molecules in Rydberg states, resulting increase in supramolecular stability. Furthermore, microwave radiation affects clustering and water vapor concentration, increasing the concentration of water vapor clusters. As a result, the probability of recently formed clusters separating decreases considerably, resulting in the accumulation of these clouds with concentrations of less than 10-15 cm-3.
    The current work is a part of the scientific investigations of scientific research and techniques in human capabilities in understanding the impact of solar activity and magnetic storms on atmospheric processes and cloud formation. Ionospheric microwave radiation in the framework of excitation of atomic and molecular Rydberg states has been considered for this purpose.
The thin and young clouds generated by solar activity can produce a greenhouse effect, which may eventually play a significant role in periodic global warming on the earth. In recent years, researchers have been attracted to pursue a practical approach, a knowledge-based and reasonable solution to this critical issue. Hence, the main purpose of this study is to provide an overview of the basic concepts and physical principles of solar wind and magnetic storms in climate change and improve atmospheric conditions.

کلیدواژه‌ها [English]

  • Microwave radiation
  • supramolecular
  • Rydberg atom
  • water vapor cluster
  • solar radiation
Avakyan, S. V., 2005, Microwave radiation of the ionosphere as a factor in the way solar flares and geomagnetic storms act on biosystems: Journal of Optical Technology, 72(8), 608-614, DOI: 10.1364/JOT.72.000608.
Avakyan, S. V., 2006, Collisions of Rydberg-excited neutrals in the ionosphere and
 
       microwave radiation: Journal of Optical Technology, 73(4), 302-303,  DOI:10.1364/JOT.73.000302.   
Avakyan, S. V., 2013, The role of solar activity in global warming: Herald of the Russian Academy of Sciences, 83(3), 275-285,  DOI:10.1134/S1019331613030015.
Avakyan, S. V., 2016, Supramolecular physics of the solar-troposphere links: Control of the cloud cover by solar flares and geomagnetic storms: Proceeding of the 11th International School and Conference "Problems of Geocosmos" Eds VS Semenov ea, (Oct 03–07, 2016, St. Petersburg, Russia), 187-191. ‏
Avakyan, S. V., 2017, Environmental supramolecular physics: Climatic and biophysical effects: Herald of the Russian Academy of Sciences, 87(3), 276-283,‏ DOI: 10.1134/S1019331617030017.
Avakyan, S. V., and Baranova, L. A., 2019, The effect of environmental electromagnetic radiation on associate formation in aqueous solutions: Biophysics, 64(1), 7-13, https://doi.org/10.1134/S0006350919010020.
Avakyan, S. V., and Devdariani, A. Z., 2016, Role of Rydberg states and microwave radiation in tropospheric water-vapor cluster formation: Journal of Optical Technology, 83(5), 327-328,  DOI:10.1364/JOT.83.000327.
Avakyan, S. V., and Voronin, N. A., 2006, Condensation process in the low atmosphere and microwave radiation of the Sun and ionosphere: Proceeding of the VI International Conference «Problem of Geocosmos», SPbSU, 24-28,  DOI:10.1134/S0001433811090027.
Avakyan, S. V., Voronin, N. A., and Nikol'sky, G. A., 2015, Response of atmospheric pressure and air temperature to the solar events in October 2003: Geomagnetism and Aeronomy, 55(8), 1180-1185, DOI:10.1134/S0016793215080034.
Baranov, M. A., Dalmonte, M., Pupillo, G., and Zoller, P., 2012, Condensed matter theory of dipolar quantum gases: Chemical Reviews, 112(9), 5012-5061,‏ DOI:10.1021/cr2003568.
Berlyand, M. E., 1975, Modern Problems of Atmospheric Diffusion and Air Pollution: Gidrometeoizdat, http://dx.doi.org/10.1364/JOT.80.000717.
Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P., and Pupillo, G., 2010, Supersolid droplet crystal in a dipole-blockaded gas: Physical Review Letters, 105(13), 135301,‏ DOI:10.1103/PhysRevLett.105.135301.
Comparat, D., and Pillet, P., 2010, Dipole blockade in a cold Rydberg atomic sample: JOSA B, 27(6), A208-A232,‏  DOI:10.1364/JOSAB.27.00A208.
Demchenko, P. F., Ginzburg, A. S., Aleksandrov, G. G., et al., 2015, Statistical modeling of average daily concentration of pollutants in the atmosphere over Moscow megalopolis by the multiple regression method: Russian Meteorology and Hydrology, 40(10), 658-666‏, DOI: 10.17265/2159-581X/2016.03.001.
El-Sayed, A., Mowbray, D. J., García-Lastra, J. M., et al., 2012, Supramolecular environment-dependent electronic properties of metal–organic interfaces: The Journal of Physical Chemistry C, 116(7), 4780-4785, ‏‏ DOI: 10.1021/jp211749g.
Fleagle, R. G., and Businger, J. A., 1981, An Introduction to Atmospheric Physics: Academic Press‏.‏
Kahn, O., 2000, Chemistry and physics of supramolecular magnetic materials: Accounts of Chemical Research, 33(10), 647-657, //doi.org/10.1021/ar9703138.
Kleppner, D., Litman, M. G., and Zimmerman, M. L., 1981, Highly excited atoms: Scientific American, 244(5), 130-149,  DOI:10.1103/PhysRevLett.33.258.
Krauklis, V. L., Nikol’skii, G. A., Safronova, M. M., and Shults, E. Y., 1990, On the conditions under which the anomalous extinction of the UV radiation by aerosol can occur in clear atmosphere: Journal of Optics Atmosphere, 3(3), 227-241,‏ DOI: 10.1134/S0016793208040014.
Landig, R., Hruby, L., Dogra, N., Landini, M., Mottl, R., Donner, T., and Esslinger, T., 2016, Quantum phases from competing short-and long-range interactions in an optical lattice: Nature, 532(7600), 476-479‏, DOI:10.1038/nature17409.
Lim, J., Lee, H. G., and Ahn, J., 2013, Review of cold Rydberg atoms and their applications: Journal of the Korean Physical Society, 63(4), 867-876,‏ DOI: 10.3938/jkps.63.867.
Nikol'Skii, G. A., and Shul'Ts, E. O., 1991, Spectral and temporal variations of the residual attenuation in the near UV region: Optika Atmosfery, 4, 961-966, ‏DOI: 10.1134/S0016793208040014.
Nilsson, K. P. R., Rydberg, J., Baltzer, L., and Inganäs, O., 2004, Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides: Proceedings of the National Academy of Sciences, 101(31), 11197-11202, ‏‏https://doi.org/10.1134/S1019331617030017.
Oshovsky, G. V., Reinhoudt, D. N., and Verboom, W., 2007, Supramolecular chemistry in water: Angewandte Chemie International Edition, 46(14), 2366-2393.‏
Petrie, W., Currie, B. W., and Forsyth, P. A., 1950, On the origin of ten centimeter radiation from the polar aurora: Canadian Journal of Research, 28(3), 324-335, DOI:10.1139/cjr50a-028.
Urban, E., Johnson, T. A., Henage, T., Isenhower, L., Yavuz, D. D., Walker, T. G., and Saffman, M., 2009, Observation of Rydberg blockade between two atoms: Nature Physics, 5(2), 110-114,DOI:10.1038/NPHYS1178.