پیش‌نگری شدت بارش در ایران با به‌کارگیری رویکرد همادی چندمدلی با استفاده از داده‌های مقیاس‎‌کاهی‌شده NEX-GDDP

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشیار اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران

2 پژوهشگر پسادکتری اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف از این مطالعه بررسی کارایی مدل­های مقیاس‌کاهی­شده روزانه جهانی تبادل زمین ناسا  (NEX-GDDP) در شبیه­سازی شدت بارش و پیش‌نگری بلندمدت آن در ایران است. برای این منظور نُه مدل از مدل­های CMIP5 از پروژه NEX-GDDP بر اساس حساسیت اقلیمی گزینش شد. برای درستی­سنجی برونداد بارش داده­های مذکور از داده­های بارش 49 ایستگاه همدیدی طی دوره تاریخی (2005-1980) و دو سنجه آماری RMSE و MBE استفاده شد. نتایج نشان داد داده­های پروژه NEX-GDDP در مقایسه با داده­های مشاهداتی اریبی چندانی ندارند و بیشتر مدل­ها با خطای نسبی کم، کارایی لازم را در بازتولید الگوی فضایی بارش در ایران دارند. از بین مدل­های نُه‌گانه بررسی­شده، مدل MPI-ESM-LR بیشینه بیش­برآوردی و مدل IPSL-CM5A-LR بیشینه کم‌برآوردی را در ایران نشان می­دهد. در مقایسه با سایر GCM ها در دوره تاریخی، داده‌های پروژه NEX-GDDP عدم قطعیت کمتری را در مقیاس منطقه‌ای نشان می­دهند و از این‌رو پیش‌نگری­های NEX-GDDP بسیار مطمئن­تر است. از روش میانگین­گیری مدل بیزی (BMA) جهت تولید یک مدل همادی از مدل­های نُه‌گانه استفاده شد. بر اساس مساحت زیر خم ROC، مدل همادی تولید­شده کارایی بهتری را نسبت به مدل­های منفرد نشان داد. پیش­نگری شدت بارش با دو شاخص SDII و RX1day با مدل همادی NEX-GDDP-MME طی سه دوره آینده نزدیک (2050-2026)، آینده میانی (2075-2051) و آینده دور (2100-2076) با دو سناریوی RCP4.5 و RCP8.5 انجام شد. پیش‌نگری­های شدت بارش نشان می­دهد در آینده در سراسر ایران بارش با شدت بیشتری اتفاق می­افتد. شاخص‌های RX1day و SDII تا پایان قرن در حدود 4 تا 13 درصد برای متوسط پهنه ایران افزایش خواهند یافت که نشان­دهنده افزایش بارش‌های سیل‌آسا طی دهه­های آینده در ایران است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projection of precipitation intensity in Iran using NEX-GDDP by multi-model ensemble approach

نویسندگان [English]

  • Azar zarrin 1
  • Abbasali Dadashi-Roudbari 2
1 Associate Professor of Climatology, Ferdowsi University of Mashhad, Department of Geography, Mashhad, Iran
2 Postdoctoral Researcher of Climatology, Ferdowsi University of Mashhad, Department of Geography, Mashhad, Iran
چکیده [English]

Global warming has a significant impact on weather and climate change. These changes, and especially changes in climate extremes, have a great impact on human society and ecosystems. Future changes in extreme climate events, including precipitation extreme, will cause great damage to society, the economy, and ecosystems because of their potentially severe effects. The purpose of this study is to investigate the performance of NASA earth exchange global daily downscaled projections (NEX-GDDP) in simulating precipitation and its long-term projection in Iran.
    For this purpose, the nine models of NEX-GDDP were selected based on climate sensitivity. Precipitations from 49 ground stations during the historical period (1980-2005) were used to evaluate the precipitation output of the mentioned models using RMSE and MBE statistics. The Bayesian model averaging (BMA) method was used to generate an ensemble model from nine models. Intensity of precipitation with two indices SDII and RX1day is projected during the three periods of near future (2026-2050), medium future (2051-2075) and far future (2076-2100) under two scenarios RCP4.5 and RCP8.5.
    The results showed that NEX-GDDP models did not have much bias compared to observation and most models with low relative error have good performance in reproducing the spatial pattern of precipitation in Iran. Among the nine selected models, MPI-ESM-LR model has shown the maximum overestimation and IPSL-CM5A-LR model has shown the maximum underestimation in Iran. Compared to other GCMs in the historical period, NEX-GDDP models show less uncertainty at the regional scale;therefore, NEX-GDDP simulations are much more reliable. The precipitation intensity projections show that in the future, precipitation will occur more intensively throughout Iran. The RX1day and SDII indices will increase by about 4 to 13 percent for the average area of Iran by the end of the century, which indicates an increase in flooding in Iran in the coming decades.
    Projections of precipitation intensity in Iran based on two indices RX1day and SDII from the set of precipitation index of ETCCDI working group by ensemble model NEX-GDDP-MME showed that with the continuation of global warming, precipitation intensity will increase significantly throughout Iran. The maximum one-day precipitation amount (RX1day) will increase between 4.42 to 13.08 percent for the area-averaged by the end of this century compared to 1980-2005. Moreover, the SDII index will increase between 4.45 to 13.96% for area-average of Iran. The highest increase in precipitation intensity generally occurs in the coastal region of southern Iran, especially in the coasts of the Persian Gulf and western Iran, while the lowest increase is generally observed in the northwestern region.
 





Introduction

Global warming has a significant impact on weather and climate change. These changes, and especially changes in climate extremes, have a great impact on human society and ecosystems. Future changes in extreme climate events, including precipitation extreme, will cause great damage to society, the economy, and ecosystems because of their potentially severe effects. The purpose of this study is to investigate the performance of NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) in simulating precipitation and its long-term projection in Iran.

Materials and methods

For this purpose, the nine models of NEX-GDDP were selected based on climate sensitivity. Precipitation from 49 ground stations during the historical period (1980-2005) were used to evaluate the precipitation output of the mentioned models using RMSE and MBE statistics. The Bayesian model averaging (BMA) method was used to generate an ensemble model from nine models. Intensity of precipitation with two indices SDII and RX1day is projected during the three periods of near future (2026-2050), medium future (2051-2075) and far future (2076-2100) under two scenarios RCP4.5 and RCP8.5.

Results and discussion

The results showed that NEX-GDDP models did not have much bias compared to observation and most models with low relative error have good performance in reproducing the spatial pattern of precipitation in Iran. Among the nine selected models, MPI-ESM-LR model has shown the maximum overestimation and IPSL-CM5A-LR model has shown the maximum underestimation in Iran. Compared to other GCMs in the historical period, NEX-GDDP models show less uncertainty at the regional scale, and therefore NEX-GDDP simulation are much more reliable. The precipitation intensity projections show that in the future, precipitation will occur more intensively throughout Iran. The RX1day and SDII indices will increase by about 4 to 13 percent for the average area of Iran by the end of the century, which indicates an increase in flooding in Iran in the coming decades.

Conclusion

Projections of precipitation intensity in Iran based on two indices RX1day and SDII from the set of precipitation index of ETCCDI working group by ensemble model NEX-GDDP-MME showed that with the continuation of global warming, precipitation intensity will increase significantly throughout Iran. The maximum one-day precipitation amount (RX1day) will increase between 4.42 to 13.08 percent for the area-averaged by the end of this century compared to 1980-2005. Also, the SDII index will increase between 4.45 to 13.96% for area-average of Iran. The highest increase in precipitation intensity generally occurs in the coastal region of southern Iran, especially in the coasts of the Persian Gulf and western Iran, while the lowest increase is generally observed in the northwestern region.

Keywords

کلیدواژه‌ها [English]

  • Precipitation intensity
  • climate change
  • BMA method
  • NEX-GDDP
  • Iran
احمدی، ح.، فلاح قالهری، غ.، باعقیده، م.، 1398، پیش‌نگری اثرات تغییر اقلیم بر بارش فصلی مناطق سردسیر ایران براساس سناریوهای واداشت تابشی (RCP): فیزیک زمین و فضا، 45(1)، 177-196.
احمدی، م.، داداشی رودباری، ع.، دیرمجائی، آ.، 1399، برآورد رواناب با استفاده از مدل IHACRES بر اساس‌ داده­های ماهواره‌ای CHIRPS و مدل­های CMIP5 (مطالعه موردی: حوضه آبخیز گرگانرود- منطقه آق‌قلا): تحقیقات آب و خاک ایران، 51(3)، 659-671.
زرین، آ.، داداشی رودباری، ع.، 1400، پیش‌نگری دوره­های خشک و مرطوب متوالی در ایران مبتنی بر برونداد همادی مدل‌های تصحیح­شده اریبی CMIP6: فیزیک زمین و فضا، 47(3)، 561-578.
زیدعلی­نژاد، ن.، ناصری، ح.، شکیبا، ع.، علیجانی، ف.، 1398، شبیه‌سازی اثر تغییر اقلیم بر رواناب رودخانه تراز- هرکش، استان خوزستان، با استفاده از مجموعه داده NEX-GDDP و مدل بارش- رواناب IHACRES: هواشناسی و علوم جوّ، 2(2)، 162-178.
قهرمان، ن.، بابائیان، ا.، طباطبایی، م.، 1395، ارزیابی پس‌پردازش بروندادهای دینامیکی مدل­های اقلیمی در

برآورد تغییرات تبخیر ‌تعرق پتانسیل تحت سناریوهای واداشت تابشی (بررسی موردی: دشت مشهد): فیزیک زمین و فضا، 42(3)، 687-696.
معصوم پورسماکوش، ج.، میری، م.، پورکمر، ف.، 1396، ارزیابی داده­های مدل­های اقلیمی CMIP5 در مقابل داده‌های مشاهده‌ای ایران: مجله ژئوفیزیک ایران، 11(4)، 40-53.
 
 
 
Akinsanola, A. A., Ongoma, V., and Kooperman, G. J., 2021, Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa: Atmospheric Research, 254, 105509.
Allan, R. P., and Soden, B. J., 2008, Atmospheric warming and the amplification of precipitation extremes: Science, 321(5895), 1481-1484.
Bao, Y., and Wen, X., 2017, Projection of China’s near- and long-term climate in a new high-resolution daily downscaled dataset NEX-GDDP: Journal of Meteorological Research, 31(1), 236-249.
Chen, H. P., Sun, J. Q., and Li, H. X., 2017, Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set: Atmospheric and Oceanic Science Letters, 10(6), 403-410.
Das, S., Das, J., and Umamahesh, N. V., 2021, Identification of future meteorological drought hotspots over Indian region: A study based on NEX-GDDP data: International Journal of Climatology, https://doi.org/10.1002/joc.714.
Donat, M. G., Alexander, L. V., Herold, N., and Dittus, A. J., 2016, Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations: Journal of Geophysical Research: Atmospheres, 121(19), 11-174.
Fallah-Ghalhari, G., Shakeri, F., and Dadashi-Roudbari, A., 2019, Impacts of climate changes on the maximum and minimum temperature in Iran: Theoretical and Applied Climatology, 138(3), 1539-1562.
Feild, J., & Learned-Miller, E., 2012, Scene text recognition with bilateral regression: Department of Computer Science, University of Massachusetts Amherst, Tech. Rep. UM-CS-2012-021.
Fowler, H. J., Ekström, M., Blenkinsop, S., & Smith, A. P., 2007, Estimating change in extreme European precipitation using a multimodel ensemble: Journal of Geophysical Research: Atmospheres, 112(D18), 1-45.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T., 1999, Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors: Statistical science, 14(4), 382-417.
IPCC 2013, Climate change 2013: The physical science basis, in Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change: Cambridge University Press, Cambridge.
Katiraie-Boroujerdy, P. S., Akbari Asanjan, A., Chavoshian, A., Hsu, K. L., and Sorooshian, S., 2019, Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set: International Journal of Climatology, 39(8), 3505-3522.
Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M., 2013, Changes in temperature and precipitation extremes in the CMIP5 ensemble: Climatic Change, 119(2), 345-357.
Klutse, N. A. B., Quagraine, K. A., Nkrumah, F., Quagraine, K. T., Berkoh-Oforiwaa, R., Dzrobi, J. F., and Sylla, M. B., 2021, The climatic analysis of summer monsoon extreme precipitation events over West Africa in CMIP6 simulations: Earth Systems and Environment, 5(1), 25-41.
Lange, S., 2020, ISIMIP3b bias adjustment fact sheet.
Massoud, E. C., Espinoza, V., Guan, B., and Waliser, D. E., 2019, Global climate model ensemble approaches for future projections of atmospheric rivers: Earth's Future, 7(10), 1136-1151.
Massoud, E. C., Lee, H., Gibson, P. B., Loikith, P., and Waliser, D. E., 2020, Bayesian model averaging of climate model projections constrained by precipitation observations over the contiguous United States: Journal of Hydrometeorology, 21(10), 2401-2418.
Meinshausen, M., Smith, S. J., Calvin, K., et al., 2011, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300: Climatic Change, 109(1), 213-241.
Pathak, R., Sahany, S., Mishra, S. K., and Dash, S. K., 2019, Precipitation biases in CMIP5 models over the South Asian Region: Scientific Reports, 9(1), 1-13.
Raghavan, S. V., Hur, J., and Liong, S. Y., 2018: Evaluations of NASA NEX-GDDP data over Southeast Asia: present and future climates: Climatic Change, 148(4), 503-518.
Rao, K. K., Kulkarni, A., Patwardhan, S., Kumar, B. V., and Kumar, T. L., 2020, Future changes in precipitation extremes during northeast monsoon over south peninsular India: Theoretical and Applied Climatology, 142(1), 205-217.
Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., and Perera, B. J. C., 2018, Statistical downscaling of precipitation using machine learning techniques: Atmospheric Research, 212, 240-258.
Schmidli, J., Frei, C., and Vidale, P. L., 2006, Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods: International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(5), 679-689.
Scoccimarro, E., Villarini, G., Vichi, M., Zampieri, M., Fogli, P. G., Bellucci, A., and Gualdi, S., 2015, Projected changes in intense precipitation over Europe at the daily and subdaily time scales: Journal of Climate, 28(15), 6193-6203.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., and Reichstein, M., 2012, Changes in climate extremes and their impacts on the natural physical environment, in Field, C. B., et al. (eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on climate change (IPCC): Cambridge University Press, 109-230.
Sheffield, J., Goteti, G., and Wood, E. F., 2006, Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling: Journal of Climate, 19(13), 3088-3111.
Singh, V., Jain, S. K., and Singh, P. K., 2019, Inter-comparisons and applicability of CMIP5 GCMs, RCMs and statistically downscaled NEX-GDDP based precipitation in India: Science of the Total Environment, 697, 134163.
Sonkoué, D., Monkam, D., Fotso-Nguemo, T. C., Yepdo, Z. D., and Vondou, D. A., 2019, Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations: Theoretical and Applied Climatology, 137(3-4), 2167-2186.
Sun, Q., Zhang, X., Zwiers, F., Westra, S., and Alexander, L. V., 2021, A global, continental, and regional analysis of changes in extreme precipitation: Journal of Climate, 34(1), 243-258.
Takahashi, H. G., Kamizawa, N., Nasuno, T., Yamada, Y., Kodama, C., Sugimoto, S., and Satoh, M., 2020, Response of the Asian summer Monsoon precipitation to global warming in a high-resolution global nonhydrostatic model: Journal of Climate, 33(18), 8147-8164.
Tank, A. K., Zwiers, F. W., and Zhang, X., 2009, Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation: Climate Data and Monitoring, WCDMP–No. 72, WMO–TD No. 1500.
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B., 2012, Bias correcting climate model simulated daily temperature extremes with quantile mapping: Hydrology and Earth System Sciences, 16(9), 3309-3314.
Thrasher, B., Xiong, J., Wang, W., Melton, F., Michaelis, A., and Nemani, R., 2013, Downscaled climate projections suitable for resource management: Eos, Transactions American Geophysical Union, 94(37), 321-323.
Turner, A. G., and Annamalai, H., 2012, Climate change and the South Asian summer Monsoon: Nature Climate Change, 2(8), 587-595.
Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., and Abbaspour, K. C., 2019, The future of extreme climate in Iran: Scientific Reports, 9(1), 1-11.
Vrugt, J. A., 2016, Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation: Environmental Modelling & Software, 75, 273-316.
Wang, H. J., Sun, J. Q., Chen, H. P., Zhu, Y. L., Zhang, Y., Jiang, D. B., and Yang, S., 2012, Extreme climate in China: Facts, simulation and projection: Meteorologische Zeitschrift, 21(3), 279-304.
Wang, X., Yang, T., Li, X., Shi, P., and Zhou, X. 2017, Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble: Stochastic Environmental Research and Risk Assessment, 31(5), 1077-1089.
Warnatzsch, E. A., and Reay, D. S. 2019, Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning: Science of the Total Environment, 654, 378-392.
Westra, S., Alexander, L. V., and Zwiers, F. W., 2013, Global increasing trends in annual maximum daily precipitation: Journal of Climate, 26(11), 3904-3918.
World Meteorological Organization, 2011, Weather Extremes in a Changing Climate: Hindsight on Foresight (World Meteorological Organization, Geneva), WMO publication no. 1075.
Xu, K., Xu, B., Ju, J., Wu, C., Dai, H., and Hu, B. X., 2019, Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China: Atmospheric Research, 226, 122-137.
Zarrin, A., and Dadashi-Roudbari, A., 2021, Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble: Theoretical and Applied Climatology, 144(1), 643-660.
Zeydalinejad, N., Nassery, H., Shakiba, A., and Alijani, F., 2021, The evaluations of NEX-GDDP and Marksim downscaled data sets over Lali region, Southwest Iran: Journal of the Earth and Space Physics, 46(4), 213-230.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W., 2011, Indices for monitoring changes in extremes based on daily temperature and precipitation data: Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851-870.
Zhao, C., Gong, J., Wang, H., Wei, S., Song, Q., and Zhou, Y., 2020, Changes of temperature and precipitation extremes in a typical arid and semiarid zone: Observations and multi-model ensemble projections: International Journal of Climatology, 40(12), 5128-5153.
Zhou, T., and Chen, X., 2015, Uncertainty in the 2 C warming threshold related to climate sensitivity and climate feedback: Journal of Meteorological Research, 29(6), 884-895.