بررسی خشکسالی در ایران با کاربست شاخص کیچ – بایرام (KBDI) و ارزیابی آن با رطوبت خاک سطحی (SSM) سنجنده‌های مایکروویو فعال

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری اقلیم شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار اقلیم شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 پژوهشگر پسادکتری اقلیم شناسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

خشکسالی طی دهه­های اخیر افزایش قابل توجهی در ایران داشته است. افزایش خشکسالی­ها، پیامدهای منفی بسیاری در حوزه­های مختلف کشاورزی، منابع آب و آتش­سوزی جنگل­ها و مراتع دارد. هدف از این پژوهش بررسی وضعیت خشکسالی در نواحی رویشی ایران با استفاده از شاخص خشکسالی کیچ–بایرام (KBDI) است. برای این منظور از شاخص خشکسالی KBDI منتج شده از مجموعه داده مرکز پیش­بینی میان مدت جو اروپا (ECMWF) نسخه پنجم (ERA5) با تفکیک افقی 25/0 درجه قوسی طی دوره آماری 2020-1981 استفاده شده است. همچنین محصول ترکیبی رطوبت خاک (SSM) از سنجنده­های مایکروویو AMI-WS (ماهواره­های ERS-1 وERS-2 ) و ASCAT (ماهوارهMetOpA-B ) با تفکیک افقی 25/0 درجه قوسی برای ارزیابی نتایج شاخص خشکسالی KBDI و همچنین وضعیت رطوبتی خاک استفاده شده است. نتایج نشان داد نواحی رویشی خلیج - عمانی و ایرانی - تورانی دارای رطوبت خاک بسیار پایین و خشکسالی بالایی در ایران هستند. مقدار رطوبت خاک نیز در این پهنه­ها پایین و در متوسط پهنه­ای به ترتیب برابر با 65/12 و 42/18 درصد است که در تمامی ماه­ها تا حدودی ثابت بوده است به عبارت دیگر خشکی ویژگی غالب اقلیمی این مناطق است. بررسی ماهانه شاخص KBDI نشان از گسترش شدت خشکسالی به سمت غرب یعنی ناحیه رویشی زاگرس در ماه­‌های گرم سال دارد. کاهش رطوبت خاک و خشکی در بخش عمده‌ای از ایران از اوایل بهار تا اواسط پاییز قابل‌مشاهده است. همچنین در ناحیه رویشی زاگرس از اواسط تابستان تا اواسط پاییز مقادیر افزایشی شاخص خشکسالی و کاهشی رطوبت خاک  قابل مشاهده است. کمینه شاخص خشکسالی در نواحی رویشی هیرکانی و ارسباران است. مطابقت نتایج شاخص­های رطوبت خاک (SSM) محصول ماهواره­ای و شاخص خشکسالی KBDI منتج شده از ECMWF-ERA5 نشان­دهنده کارایی مناسب شاخص خشکسالی KBDI در شناسایی کانون­های خشکسالی در ایران و بررسی الگوهای زمانی-مکانی رخداد خشکسالی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating drought in Iran using Keetch-Byram drought index (KBDI) and evaluating it with surface soil moisture (SSM) of active microwave sensors

نویسندگان [English]

  • Kobra Shojaeizadeh 1
  • Mahmoud Ahmadi 2
  • Abbasali Dadashi-Roudbari 3
1 Ph.D. student in Climatology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Associate Professor of Climatology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 Postdoctoral Research Associate of Climatology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Drought is a natural phenomenon that is mainly caused by less than normal precipitation over a long period that occurs in almost all climates. Since the late 1970s, the occurrence of drought has increased globally due to increased evaporation (caused by global warming). This phenomenon occurs slowly and can be short-term or terminated within a few months or continue for several years. drought has increased significantly in Iran in recent decades. The increase in droughts has many negative consequences in different areas of agriculture, water resources, and wildfire. The purpose of this study is to investigate the drought situation in the vegetation areas of Iran using the Keetch-Byram drought index (KBDI). For this purpose, the KBDI drought index derived from the data set of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth edition (ERA5) with a horizontal resolution of 0.25o during the period of 1981-2020 has been used. Also, the combined product of surface soil moisture (SSM) from microwave sensors AMI-WS (ERS-1 and ERS-2 satellites) and ASCAT (MetOpA-B satellite) with a horizontal resolution of 0.25 o to evaluate the KBDI drought index results as well as the moisture condition. The results showed that the khalij-Omani and Irani-Turani vegetation areas have very low soil moisture and high drought in Iran. The amount of soil moisture in these areas is low and the area-averaged is equal to 12.65% and 18.42%, respectively, which has been somewhat constant in all months, in other words, dryness is the predominant climate feature of these areas. The monthly analysis of the KBDI index shows the spread of drought severity towards the west, i.e., the vegetation area of Zagros, in the hot months of the year. A decrease in soil moisture and dryness can be observed in a major part of Iran from early spring to mid-autumn. Also, in the Zagros region, from mid-summer to mid-autumn, increasing values of the drought index and decreasing soil moisture can be observed. The minimum drought index is in the vegetation areas of Hyrkani and Arsbaran. The correspondence between the results of the surface soil moisture (SSM) of the satellite product and the KBDI drought index obtained from ECMWF-ERA5 shows the appropriate efficiency of the KBDI drought index in identifying drought centers in Iran and investigating the spatio-temporal patterns of drought occurrence. frequent low-intensity drought may favor more drought-tolerant species and adapt forests and grasslands to future conditions without the need for management measures.

کلیدواژه‌ها [English]

  • Iran
  • drought
  • soil moisture
  • KBDI index
باروتی، حنانه، ذوالفقاری، مریم و سلیمان پور، سید مسعود. (1392). مقایسه شاخص­های PNPI و SPI در پایش و پهنه­بندی روند خشکسالی در استان قزوین. پنجمین کنفرانس مدیریت منابع آب ایران،تهران.
بذرافشان، جواد، شهبازی، سمیرا، ایران نژاد، پرویز و سهرابی، تیمور. (1394). واسنجی شاخص شدت خشکسالی‌ پالمر تحت شرایط اقلیمی خشک و نیمه خشک مناطق غرب و جنوب غرب ایران. مجله پژوهش­های حفاظت آب و خاک، 22 (5)، 23-44.
جهانگیر، محمد حسین، حسین دوست، محمد صادق و ارست، مینا. (1400). ارزیابی وضعیت خشکسالی استان گیلان با استفاده از شاخص کچ– بایرام (KBDI) در انطباق با شاخص درصد نرمال بارندگی (PNPI). مدل سازی و مدیریت آب و خاک، 1 (4)، 57-67.
چکشی، بهاره. (1380). بررسی جنبه­های زیست­محیطی پدیده خشکسالی و سیل، اولین کنفرانس ملی بررسی راهکارهای مقابله با بحران.
حجابی، سمیه، ایران نژاد، پرویز و بذرافشان، جواد. (1397). تعدیل شاخص شدت خشکسالی پالمر (PDSI) بر مبنای طرحواره برهمکنش جو- سطح خشکی (ALSIS) در حوضه آبریز کرخه. تحقیقات منابع آب ایران، 14 (3)، 170-183.
حجازی زاده، زهرا، پژوه، فرشاد، و شکیبا، هانیه. (1400). واکاوی و مقایسه ی چند شاخص خشکسالی اقلیمی و تعیین بهترین شاخص در جنوب شرق ایران. جغرافیا، 19 (68 )، 5-21.
خسروی، محمود، زهرایی، اکبر، حیدری، حسین و بنی نعیمه، سارا. (1391). تعیین مناطق هم خشکسالی استان گیلان با استفاده از شاخص ناهنجاری بارش. جغرافیا و مخاطرات محیطی، 1 (3)، 1-20.
فرج زاده، منوچهر و احمدیان، کلثوم. (1393). تحلیل زمانی و مکانی خشکسالی با استفاده از شاخص SPI در ایران. مخاطرات محیط طبیعی،3 (4)، 1-16.
کردپور، ایمان.(1398). تلفیق مشاهدات هواشناسی با مشاهدات ماهواره GRACE جهت بررسی خشکسالی در ایران. به راهنمایی سعید فرزانه و رضا شاه حسینی. تهران: دانشگاه تهران، دانشکده مهندسی نقشه برداری و اطلاعات مکانی.
مرادی، حمیدرضا و عرفان زاده، رضا.(1380). بررسی روند خشکسالی ها و ترسالی ها در حوضه رود هراز. اولین کنفرانس ملی بررسی راهکارهای مقابله با بحران آب،زابل.
مصطفی‌زاده، رئوف و ذبیحی، محسن. (1395). تحلیل و مقایسه شاخص‌های ‏SPI‏ و ‏SPEI‏ در ارزیابی خشک سالی هواشناسی با استفاده از نرم‌افزار  R ( بررسی موردی: استان کردستان). فیزیک زمین و فضا، 42 (3)،633-643.
موذنی، نیلوفر. (1397). پهنه­بندی ریسک آتش­سوزی جنگل در بیوم زاگرس (مطالعه موردی استان کردستان). به راهنمایی رومینا سیاح نیا و حسن اسماعیل زاده. تهران: دانشگاه شهید بهشتی، پژوهشکده علوم محیطی.
Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770-11775.
Ainuddin, N. A., & Ampun, J. (2008). Temporal analysis of the keetch-byram drought index in Malaysia: implications for forest fire management. Journal of Applied Sciences, 8(21), 3991-3994.
Andrade, C., & Bugalho, L. (2023). Multi-Indices Diagnosis of the Conditions That Led to the Two 2017 Major Wildfires in Portugal. Fire, 6(2), 56.
Bengtsson, L., Kanamitsu, M., Kallberg, P., & Uppala, S. (1982). FGGE 4-dimensional data assimilation at ECMWF (weather forecasts). Bulletin of the American Meteorological Society, 63, 29-43.
Chaparro, D., Vall-Llossera, M., Piles, M., Camps, A., Rüdiger, C., & Riera-Tatché, R. (2016). Predicting the extent of wildfires using
 
 
 
      remotely sensed soil moisture and temperature trends. IEEE journal of selected topics in applied earth observations and remote sensing, 9(6), 2818-2829.
Charlton, C., Stephenson, T., Taylor, M. A., & Campbell, J. (2022). Evaluating Skill of the Keetch–Byram Drought Index, Vapour Pressure Deficit and Water Potential for Determining Bushfire Potential in Jamaica. Atmosphere, 13(8), 1267.
Charlton, C., Stephenson, T., Taylor, M. A., & Campbell, J. (2022). Evaluating Skill of the Keetch–Byram Drought Index, Vapour Pressure Deficit and Water Potential for Determining Bushfire Potential in Jamaica. Atmosphere, 13(8), 1267.
Crapolicchio, R., A. Bigazzi, G. De Chiara, X. Neyt, A. Stoffelen, M. Belmonte, W. Wagner, C. Reimer (2016) The scatterometer instrument competence centre (SCIRoCCo): Project's activities and first achievements, Proceedings European Space Agency Living Planet Symposium 2016, 9-13 May 2016, Prague, Czech Republic, 9-13.
Crossett, C. C., Betts, A. K., Dupigny-Giroux, L. A. L., & Bomblies, A. (2020). Evaluation of daily precipitation from the ERA5 global reanalysis against GHCN observations in the northeastern United States. Climate, 8(12), 148.
Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. Noise reduction in speech processing, 1-4.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3(1), 52-58.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., & Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597
Dikici, M. (2020). Drought analysis with different indices for the Asi Basin (Turkey). Scientific Reports, 10(1), 20739.
Döll, P., Fiedler, K., & Zhang, J. (2009). Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences, 13(12), 2413-2432.
Dolling, K., Chu, P. S., & Fujioka, F. (2009). Natural variability of the Keetch–Byram drought index in the Hawaiian Islands. International journal of wildland fire, 18(4), 459-475.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., & Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185-215.
Ghulam, A., Qin, Q., Teyip, T., & Li, Z. L. (2007). Modified perpendicular drought index (MPDI): a real-time drought monitoring method. ISPRS journal of photogrammetry and remote sensing, 62(2), 150-164.
Gibson, J. K., Kållberg, P., Uppala, S. M., Hernandez, A., Nomura, A., & Serrano, E. (1999). ECMWF re-analysis project report 1, ERA-15 description (version 2). Technical Report, ECMWF, Reading, UK.
Gülşen, K. U. M., & SÖNMEZ, M. (2016). Determination of meteorological forest fire risks in mediterranean climate of Turkey. KSÜ Doğa Bilimleri Dergisi, 19(2), 181-192.
Hamarash, H., Hamad, R., & Rasul, A. (2022). Meteorological drought in semi-arid regions: A case study of Iran. Journal of Arid Land, 14(11), 1212-1233.
Hayes, M. J., Alvord, C., & Lowrey, J. (2007). Drought indices. Intermountain west climate summary, 3(6), 2-6.
Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
H-SAF (2017): ASCAT Surface Soil Moisture CDR2014 Time Series 12.5 km Sampling - Metop, EUMETSAT SAF on Support to Operational Hydrology and Water Management.
Isaaks E. H., and Srinivasta R. M (1989). Applied Geostatistics. Oxford University Press:Oxford
Jackson, R. D., Kustas, W. P., & Choudhury, B. J. (1988). A reexamination of the crop water stress index. Irrigation science, 9, 309-317.
Janis, M. J., Johnson, M. B., Forthun, G. 2002. NearReal Time Mapping of Keetch–Byram Drought Index in the South-Eastern United States. International Journal of Wildland Fire, 11, 281–289.
Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, 112(10), 3833-3845.
Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control (Vol. 38). US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.
Li, L., She, D., Zheng, H., Lin, P., & Yang, Z. L. (2020). Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. Journal of Hydrometeorology, 21(7), 1513-1530.
Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19(4), 1003-1021.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353-2369.
Liu, M., Xu, X., Xu, C., Sun, A. Y., Wang, K., Scanlon, B. R., & Zhang, L. (2017). A new drought index that considers the joint effects of climate and land surface change. Water Resources Research, 53(4), 3262-3278.
Mersin, D., Gulmez, A., Safari, M. J. S., Vaheddoost, B., & Tayfur, G. (2022). Drought Assessment in the Aegean Region of Turkey. Pure and Applied Geophysics, 179(8), 3035-3053.
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
Mitri, G., Jazi, M., & McWethy, D. (2015). Assessment of wildfire risk in Lebanon using geographic object-based image analysis. Photogrammetric Engineering & Remote Sensing, 81(6), 499-506.
Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 16(3), 381-389.
Natarajan, N., Vasudevan, M., Ahash Raja, S., Mohanpradaap, K., Sneha, G., & Joshna Shanu, S. (2023). An assessment methodology for drought severity and vulnerability using precipitation-based indices for the arid, semi-arid and humid districts of Tamil Nadu, India. Water Supply, 23(1), 54-79.
Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., ... & Zreda, M. (2013). State of the art in large‐scale soil moisture monitoring. Soil Science Society of America Journal, 77(6), 1888-1919.
Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
Rakhmatova, N., Arushanov, M., Shardakova, L., Nishonov, B., Taryannikova, R., Rakhmatova, V., & Belikov, D. A. (2021). Evaluation of the perspective of ERA-Interim and ERA5 reanalyses for calculation of drought indicators for Uzbekistan. Atmosphere, 12(5), 527.
Satoh, Y., Yoshimura, K., Pokhrel, Y., Kim, H., Shiogama, H., Yokohata, T., ... & Oki, T. (2022). The timing of unprecedented hydrological drought under climate change. Nature communications, 13(1), 3287.
Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate dynamics, 31, 79-105.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027-4040.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17-22.
Ulaby, F. T., Moore, R. K., & Fung, A. K. (1982). Microwave remote sensing: Active and passive. Volume 2-Radar remote sensing and surface scattering and emission theory.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., ... & Woollen, J. (2005). The ERA‐40 re‐analysis. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(612), 2961-3012.
van der Schrier, G., Barichivich, J., Briffa, K. R., & Jones, P. D. (2013). A scPDSI‐based global data set of dry and wet spells for 1901–2009. Journal of Geophysical Research: Atmospheres, 118(10), 4025-4048.
Varol, T., & Ertuğrul, M. (2016). Analysis of the forest fires in the Antalya region of Turkey using the Keetch–Byram drought index. Journal of Forestry Research, 27, 811-819.
Verbesselt, J., Jonsson, P., Lhermitte, S., van Aardt, J., & Coppin, P. (2006). Evaluating satellite and climate data-derived indices as fire risk indicators in savanna ecosystems. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1622-1632.
Vose, J. M., Clark, J. S., Luce, C. H., & Patel-Weynand, T. (2015). Effects of drought on forests and rangelands in the United States: a comprehensive science synthesis.
Wang, C., Qi, S., Niu, Z., & Wang, J. (2004). Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Canadian Journal of Remote Sensing, 30(5), 671-679.
Wilhite, D. A. (2000). Drought preparedness and response in the context of Sub‐Saharan Africa. Journal of contingencies and crisis management, 8(2), 81-92.
Wilhite, D. A., & Glantz, M. H. (1985). Understanding the Drought Phenomenon: The Role of Definitions. Water International, 10, 111-120.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., & Schumann, A. H. (2010). Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrology and Earth System Sciences, 14(1), 1-24.
Yoon, J. H., Wang, S. Y. S., Gillies, R. R., Hipps, L., Kravitz, B., & Rasch, P. J. (2015). 2. Extreme fire season in California: A glimpse into the future?. Bulletin of the American Meteorological Society, 96(12), S5-S9.
Yu, H., Zhang, Q., Xu, C. Y., Du, J., Sun, P., & Hu, P. (2019). Modified palmer drought severity index: model improvement and application. Environment international, 130, 104951.
Zhang, Q., Li, Q., Singh, V. P., Shi, P., Huang, Q., & Sun, P. (2018). Nonparametric integrated agrometeorological drought monitoring: Model development and application. Journal of Geophysical Research: Atmospheres, 123(1), 73-88.
Zhang, X., Chen, B., Zhao, H., Li, T., & Chen, Q. (2018). Physical-based soil moisture retrieval method over bare agricultural areas by means of multi-sensor SAR data. International Journal of Remote Sensing, 39(12), 3870-3890.
Zhao, T., & Dai, A. (2015). The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. Journal of climate, 28(11), 4490-4512.
Zhou, Y., Zhou, P., Jin, J., Wu, C., Cui, Y., Zhang, Y., & Tong, F. (2022). Drought identification based on Palmer drought severity index and return period analysis of drought characteristics in Huaibei Plain China. Environmental Research, 212, 113163.
References (in Persian)
Barouti, Hananeh, Zulfiqari, Maryam.,& Suleimanpour, Seyyed Massoud. (2012). Comparison of PNPI and SPI indices in monitoring and zoning the drought trend in Qazvin province. The 5th Iran Water Resources Management Conference, Tehran.[In Persian]
Bazrafshan, J., & Bazrafshan, J. (2015). Palmer Drought Severity Index's calibration under the climatic conditions of arid and semiarid regions of the West and South West of Iran. Journal of Water and Soil Conservation22(5), 23-44.[In Persian]
Chakshi, spring, 2018, investigation of the environmental aspects of drought and flood phenomenon, the first national conference on crisis coping strategies. [In Persian]
Farajzadeh, M., & Ahmadian, K. (2014). Temporal and Spatial Analysis of Drought with use of SPI Index in Iran. Journal of Natural Environmental Hazards, 3(4), 1-16. [In Persian]
Hejabi, S., Irannejad, P., & Bazrafshan, J. (2018). Modification of the Palmer Drought Severity Index (PDSI) based on Atmosphere-Land Surface Interaction Scheme (ALSIS) in Karkheh River Basin. Iran-Water Resources Research14(3), 170-183.[In Persian]
Hejazi zadeh, Pazhoh, Farshad, & shakiba, haniyeh. (2021). Analysis and comparing several climate droughts indicators and determine the best index in southeast of Iran. GEOGRAPHY, 19(68 ), 5-21. [In Persian]
Jahangir, M. H., Hosseindoost, M. S., & Arast, M. (2021). Assessment of drought condition in Guilan Province using the Keetch–Byram Drought Index (KBDI) in accordance with the Percent of Normal Precipitation Index (PNPI). Water and Soil Management and Modelling1(4), 57-67.[In Persian]
Khosravi, M., Zahraei, A., Heydari, H., & Bani naimeh, S. (2012). Designated drought regions of Gilan using rainfall anomaly indexJournal of Geography and Environmental Hazards1(3), 1-20. [In Persian]
Kordpour, Iman. (2018). Combining meteorological observations with GRACE satellite observations to investigate drought in Iran. under the guidance of Saeed Farzaneh and Reza Shah Hosseini. Tehran: University of Tehran, Faculty of Mapping and Geospatial Information Engineering.[In Persian]
Moradi, Hamidreza., & Erfanzadeh, Reza. (2008). Investigating the trends of droughts and droughts in the Haraz river basin. The first national conference on solutions to deal with the water crisis, Zabul. [In Persian]
Mostafazadeh, R., & Zabihi, M. (2016). Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics42(3), 633-643. [In Persian]
Mozni, Nilofer. (2017). Forest fire risk zoning in Zagros biome (Kurdistan province case study). under the guidance of Romina Sayahnia and Hassan Ismailzadeh. Tehran: Shahid Beheshti University, Research Institute of Environmental Sciences.[In Persian]