ارزیابی تغییرات تنش لرزه‌ای در پهنه مکران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 استادیار، پژوهشکده زلزله‌شناسی، پژوهشگاه بین المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

2 کارشناس ارشد، پژوهشکده زلزله‌شناسی، پژوهشگاه بین المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

پهنه مکران با طولی متجاوز از 900 کیلومتر در جنوب خاور ایران و جنوب پاکستان، تنها بخش از فلات ایران است که در آن پوسته اقیانوسی صفحه عربی با شیب کم به‌سوی شمال، به زیر پوسته قاره­ای ایران فرورانش دارد. مکران بین دو پهنه برخوردی قاره­ای-قاره­ای زاگرس و هیمالیا، محصور شده است. فرورانش پوسته اقیانوسی در راستای سطوح گسلی با شیب به‌سمت شمال از کرتاسه آغازین شروع شده است. با توجه به فعالیت زمین‌ساختی، ادامه فرورانش و وجود پهنه گسلی–راندگی با درازای بالا در بخش شمالی فرورانش مکران و حاشیه شمالی دریای عمان، موجب گردیده است که این منطقه از خطرپذیری بسیاربالایی متأثر از وقوع زمین­لرزه­ای قوی و سونامی ناشی از آن برخوردار باشد. در این مطالعه نوار مکران با در نظرگرفتن پارامتر­های لرزه­خیزی در نظر گرفته شده در رابطه گوتنبرگ-ریشتر، مورد ارزیابی قرار گرفت. به‌عبارتی ویژگی آماری زمین‌‌لرزه‌‌ها با در نظرگرفتن توزیع فضایی و زمانی آنها لحاظ شد. به‌همین منظور داده­های پایه مرتبط با گسلش و لرزه‌‌خیزی به‌همراه بزرگای زمین‌لرزه‌ها، مورد بررسی قرار گرفت. پایه و اساس این آنالیز تعیین پارامتر لرزه‌‌خیزی (b) بود که بر اساس محاسبه توزیع-فراوانی بزرگا و انتگرال همبستگی محاسبه گردید. در این روش توزیع زمانی و فضایی پارامترها، ویژگی تجمعی داده‌ها و سطح تنش زمین­ساختی منطقه مرتبط با فرایندهای مختلف لرزه‌زمین‌ساختی متفاوت از دیگر روش‌ها لحاظ شده است. به‌منظور محاسبه این پارامترها از داده‌های لرزه­ای مختلف (پایگاه­های داخلی و خارجی) استفاده گردید. با در نظرگرفتن توزیع رومرکز و بزرگای زمین‌لرزه­ها، میزان تغییرات پارامتر لرزه­خیزی در منطقه بین 6/1>b>8/ برآورد شد. بر اساس نتایج به‌دست‌آمده از تغییرات پارامتر لرزه‌خیزی، تغییرات اختلاف تنش حداکثری و حداقلی (σ13) در منطقه محاسبه (450-62 مگاپاسکال) گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of seismic stress change in the Makran zone

نویسندگان [English]

  • Mehrdad Mostafazadeh 1
  • Leila Mahshadnia 2
1 2 Assistant Professor, International Institude of Earthquake Engineering and Seismology(IIEES), Tehran, Iran,
2 Assistant Professor, International Institude of Earthquake Engineering and Seismology(IIEES), Tehran, Iran
چکیده [English]

The Makran zone, with a length of more than 900 km in southeastern Iran and southern Pakistan, is the only part of the Iranian plateau in which the oceanic crust of the Arabian plate with a slight slope to the north subducts beneath the continental crust of Iran. Makran is surrounded by two continental-continental zones of the Zagros and the Himalayas. Subduction of the oceanic crust along fault surfaces with a slope to the north has begun from the Early Cretaceous. Due to tectonic activity, continued subduction and the existence of a long megathrust zone in the northern part of Makran subduction and the northern shore of the Oman Sea has caused that this region has a very high risk of strong earthquakes and tsunamis. In this study, the Makran zone was evaluated by considering the concepts of seismicity parameters considered in the Gutenberg-Richter relationship. In other words, the statistical characteristic of earthquakes is considered in accordance with their spatial and temporal distribution. For this purpose, the basic data of fault and seismicity associated with the magnitude of earthquakes are investigated by the distribution of earthquakes and faults. The basis of the calculation of the b-value parameter is estimated using a frequency–magnitude distribution and correlation integral methods. Contrary to other methods, in this method, the time and space distribution of the parameters, the cumulative properties of the data and the tectonic stress level of the region associated with different earthquake seismic processes. In order to calculate these parameters, different seismic catalog (internal and external bases) have been used. Considering the distribution of earthquakes and magnitude data seismicity parameter was calculated and it is changed between 0.8<b<1.6 values. Considering the b-value quantity at any point, the map of differential stress (σ13) is calculated according to MPA (62-450 MPa).
    Based on the study of changes in seismicity parameters in the Makran zone and clustering of large earthquakes that form areas with high-stress concentration, the heterogeneity of seismicity parameters covers a significant part of the study area. Large b-values indicate the random occurrence of small earthquakes, indicating low-stress structures in parts of the region. Heterogeneity of seismic zones leads to changes in the value of b. Based on the seismicity parameters calculated in the Makran zone, the highest concentration of seismic potential for destructive earthquakes with probability is located in the southern terminal of Nehbandan, Bam, Gowk fault systems (connection zones of Nehbandan fault system terminal, Chaman, OrnachNal and Qazband with the thrust faults of Makran zone).

کلیدواژه‌ها [English]

  • Makran zone
  • seismicity
  • b-value
  • differential stress
پرتابیان،ع.، انصاری، ش.، جهاندیده، ف.، 1398، تجزیه‌وتحلیل فرکتالی پس­لرزه­های زمین­لرزه 1392 گشت-سراوان، شمال شرق مکران: فصلنامه زمین­شناسی ایران، 13 (52)، 39-48.
موقری،ر.، جوان دولوی،غ.، نوروزی،م.، سدیدخوی، ا.، 1393. تعیین ساختار سرعتی پوسته جنوب شرق ایران بر اساس نوفه محیطی لرزه نگاشت‌‌های باند پهن، مجله فیزیک زمین و فضا 40 (2).17-30.
Aki, K., 1984, Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res. 89, 5867-5872.
Amelung, F. and King, G.,1997, Earthquake scaling laws for creeping and non-creeping faults, Geophys. Res. Lett., 24,507–510.
Aviles, C. A., Scholz, C. H., Boatwright, 1987, Fractal Analysis Applied to             Characteristics Segments of the San Andreas fault, J. Geophys. Res., 92, 331-344.
Byrne, D. E. Sykes, L. R. Davis, D. M., 1992, Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. J. Geophys. Res. 97 (B1), 449–478.
Custódio, S. and Archuleta, R., 2006, values as a Proxy for Stress, Inferences from Dynamic Modeling of the 2004 ParkfieldEarthqua, AGU Fall Meeting – December 11-15 2006-San Francisco, California.
DeJong, K. A., 1982, Tectonics of Persian Gulf, Gulf of Oman and southern Pakistan region. In, Nairn, A.E.M. & Stehli, F.G. (eds) The Indian Ocean. Plenum, New York, 315–351.
Dolati, A. and Burg, J.‐P., 2013, Preliminary fault analysis and paleostress evolution in the Makran Fold‐and‐Thrust Belt in Iran. In Al Hosani, K. Roure, F. Ellison, R. and Lokier, S. (Eds.), Lithosphere dynamics and sedimentary basins, The Arabian Plate and analogues (pp.261–277). Heidelberg, Germany, Springer. https ://doi.org/10.1007/978‐3‐642‐30609‐9_13Normand, et al., 2019
Frohlich, C. and Davis, S., 1993, Teleseismic b-values: or, much ado about 1.0, J. geophys. Res., 98, 631–644.
Gorshkov, A. I., Kuznetsov, I. V., Panza, G. F., Soloviev, A., 2000, Identification of Future Earthquake Sources in the Carpatho-Balkan Orogenic Belt Using Morphostructural Criteria, Pure and Applied Geophysics,157 ,79-95.
Grando, G. and McClay, K., 2007, Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment. Geol. 196, 157–179.
Hirata, T., 1989, A correlation between the b value and the fractal dimension of earthquakes, Journal of Geophysical Research, Solid Earth, 94(B6), 7507-74514.
Kidd, R. G. W. and McCall, G. J. H., 1985, Plate tectonics and the evolution of Makran. In: McCall, G.J.H. (ed.) East Iran Project, Area No. 1: Geological Survey of Iran, Report, 1, 564–618.
Kijko, A. and Sellevoll, M. A., 1989, Estimation of earthquake hazard parameters from incomplete data files. Part I: utilization of extreme and complete catalogs with different threshold magnitudes. Bull. Seism. Soc. Am. 79(3), 645–654.
Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., Klaeschen, D., 2000, Structure of the Makran subduction zone from wide-angle and reflection seismic data, Tectonophysics 329, 171–191.
Lopez Casado, C., Sanz de Galdeano, C., Delgado, J. and Peinado, M. A., 1995, The b parameter in the Betic Cordillera, Rif and nearby sectors.Relations with the tectonics of the region, Tectonophysics, 248, 277–292.
Main, I. G.,1991, A modified Griffith criterion for the evolution of damage with a fractal distribution of crack lengths, application to seismic event rates and b-values, Geophys. J. Int., 107,335–362.
Mogi, K., 1962, Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthq. Res. Inst, 40, 831–853.
Mokhtari, M et al., 2019, A review of the seismotectonics of the Makran Subduction Zone as a baseline for Tsunami Hazard Assessments. Geoscience Letters. 6(13). DOI:10.1186/s40562-019-0143-1 (in Persian).
Mokhtari, M., Abdoulahi Fard, I., Hessami, K., 2008, Structural elements of the Makran region, Oman Sea, and their potential relevance to tsunamigenesis, Natural Hazards, 47, 185–199.
Normand, R., Simpson, G., Bahroudi, A., 2019, Extension at the coast of the Makran subduction zone
(Iran), Terra Nova. 31,503-510.
Okal, E., Barbara, A., Romanowicz, A., 1994, On the variation of b-values with earthquake size, Physics of the Earth and Planetary Interiors, 87, 55-76.
Okubu, P. G., Aki., 1987, Fractal Geometry in the San Andreas Fault System, J. Geophys. Res., 92,                345-355.
Oncel, A. O., Main, I. G., Alptekin, Ö., Cowie, P., 1996a, Temporal variations in the fractal properties of seismicity in the North Anatolian Fault Zone between 31oE and 41oE, Pure appl. Geophys., 146, 147–159.
Oncel, A. O., Main, I. G., Alptekin, Ö., Cowie, P., 1996b, Spatial variations of the fractal properties of seismicity in the Anatolian fault zones, Tectonophysics, 257, 189-202.
Öncel, A. O., Wyss, M., 2000, The major asperities of the 1999 M7.4 Izmit earthquake, defined by the microseismicity of the two decades before it, Geophysical Journal International-OXFORD.,143, 501-506.
Penney, C., Tavakoli, F., Saadat, A. R., Nankali, H. R., Sedighi, M., Khorrami, F., Sobouti, F., Ra, Z., Cople, A., Jackson, J., Priestley, K., 2017, Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4.
Platt, J. P., Leggett, J. K., Alam, S., 1988, Slip vectors and fault mechanics in the Makran accretionary wedge, southwest Pakistan, J. Geophys. Res.93, 7955-7973.
Platt, J. P., Leggett, J. K. and Alam, H. R. S., 1985, Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan, Geology, 13, 507–511.
Quennell, A. M., 1958, The structural and geomorphic evolution of theDead Sea Rift, Quarterly J. Geol. Soc. Lond. 114, 2–24.
Schluter, H. U., Prexl, A., Gaedicke, C., Roeser, H., Reichert, C., Meyer, H., and von Daniels, C., 2002, The Makran accretionary wedge, sediment thicknesses and ages and the origin of mud volcanoes, Marine Geology185, 219.
Scholz, C. H., 1968, The Frequency-Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes, Bull. Seism. Soc. Am., 58, 399-415.
Scholz, C. H., 2015, On the stress dependence of the earthquake b value, Geophysical Research Letters, 42,5, 1399-1402.
Sobiesiak, M., 2000, Fault plane structure of the Antofagasta, Chile, earthquake of 1995, Geophys. Res. Lett., 27, 577–600.
Spada, M., T. Tormann, S.Wiemer, and B. Enescu (2013), Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust, Geophys. Res. Lett., 40,709-714, doi: 10.1029/2012GL054198,2013.
Swaroopa Rani, V., Srivastava, K., Srinagesh, D., Dimri, V. P., 2011, Spatial and Temporal Variations of b-Value and Fractal Analysis for the Makran Region, Marin Geodesy, 34(1), 77-82, DOI: 10.1080/01490419.2011.547804.
Urbancic, T. I., Trifu, C. I., Long, J. M., Young, R. P., 1992, Space-time correlations of b-values with stress release, Pure appl. Geophys, 139, 449-462.
Vernant, P. H., Nilforoushan, F., Hatzfeld, D., Abbasi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., Chery, J., 2004, Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman, Geophys. J. Int., 157: 381-398.
Vigny, C., Huchon, P., Ruegg, J. C., Khanbari, K., Asfaw, L. M., 2006, Confirmation of Arabia plate slow motion by new GPS data in Yemen. Journal of Geophysical Research 111(B2).
Wallace, R.E., 1951, Geometry of shearing stress and relation to faulting, J Geol 59:118–130.
Westerhaus, M., Wyss, M., Ruchan, Y., Zschau, J., 2002, Correlating variations of b values and crustal deformations during the 1990s may have pinpointed the rupture initiation of the Mw=7.4 Izmit earthquake of 1999 August 17: Geophys. J. Int., 148, 139–152.
White, R. S., 1982, Deformation of the Makran accretionary sediment prism in the Gulf of Oman (northwest Indian Ocean), in Trench-Fore arc Geology, Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, edited by J. K. Leggett, Geol. Soc. Spec. Publ., 10, 69–84.
Wiemer, S., Katsumata, K., 1999, Spatial variability of seismicity parameters in aftershock zones, J. geophys. Res., 104, 13 135–13 151.
Wiemer, S., McNutt, S. R., 1997, Variations in the frequency magnitude distribution with depth in two volcanic areas, Mount St. Helens, Washington, and Mount Spurr, Alaska, Geophys. Res. Lett., 24, 189–192.
Wiemer, S., McNutt, S. R., Wyss, M., 1998, Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, Geophys. J. Int., 134, 409–421.
Wiemer, S., Wyss, M., 1997, Mapping the frequency-magnitude distribution in asperities, An improved technique to calculate recurrence times?, J. Geophys. Res., 102, 15115-15128.
Wyss, M., Schorlemmer, D., Wiemer, S., 2000, Mapping asperities by minima of local recurrence time, The San Jacinto-Elsinore fault zones, J. Geophys. Res., 105, 7829-7844.
Wyss, M., Shimazaki, K., Wiemer, S., 1997, Mapping active magma chambers by b-values, J. geophys. Res., 102, 20413–20422.
Wyss, M., 1973, Towards a physical understanding of the earthquake frequency distribution, Geophys. J. R. Astron. Soc., 31, 341-359.