مطالعه ارتباط بین شاخص‌های اقلیمی جهانی در مقیاس‌های زمانی مختلف

نوع مقاله : مقاله پژوهشی‌

نویسنده

استادیار، دانشکده فیزیک، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این تحقیق ارتباط احتمالی بین تعدادی از شاخص­های مهم اقلیمی با استفاده از چندین روش آماری مورد  بررسی قرار گرفته است. در ابتدا با بررسی سری­های زمانی و استفاده از روش تحلیل طیفی، محتوای طیفی داده­ها و شدت آنها در بسامدهای مختلف به­دست آمد. سپس روش همبستگی بین سیگنال­ها برای بررسی میزان ارتباط خطی آنها در لَگ­های زمانی مختلف استفاده شد. در نهایت با به­کارگیری روش همخوانی موجک، میزان همبستگی شاخص­ها در بسامدها و زمان­های مختلف تحلیل شد. علاوه بر این، با استفاده از نقشه­های پراکنش، ارتباط احتمالی داده­ها بررسی شد. شاخص­های انتخابی شامل تعداد لکه­های خورشیدی (SN)، شاخص نوسان جنوبی (SOI)، نوسان شبه­دوسالانه (QBO)، نوسان اطلس شمالی (NAO) و نوسان مدیترانه (MO) می­باشند که مقادیر ماهانه آنها در دوره آماری 1979 تا 2021 مورد استفاده قرار گرفت. بر اساس تحلیل­های انجام شده شواهدی مبنی بر تاثیر چرخه 11 ساله­ لکه­های خورشیدی بر سیگنال SOI یافت شد. نتایج نشان می­دهد، که اگر سیگنال SN به مثابه علت و سیگنال SOI به مثابه معلول در نظر گرفته شود، مقدار کمینه مولفه 11 ساله در سیگنال SOI در حدود 3 سال بعد از مقدار بیشینه همین مولفه در سیگنال SN رخ می­دهد. روش همبستگیِ تاخیری و نمودار پراکنش نیز مؤید افزایش رابطه خطی این لکه­ها با شاخص SOI در لگ زمانی 33 تا 36 ماه است. بیشترین همبستگی در لگ زمانی صفر در ارتباط با سیگنال­های NAO و MO وجود دارد، که با توجه به تحلیل همخوانی موجک، به­دلیل نوسان هم­فاز مشترک دهه­ای بین این دو سیگنال است. به­علاوه نوسان­های مشترک با فاز سازگار در مقاطعی از زمان در مقیاس بین­سالی بین سیگنال­ها مشاهده شد. نمودارهای پراکنش نیز جزئیات بیشتری از ارتباط احتمالی بین داده­ها را نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the interrelationship between global climate indices at different time scales

نویسنده [English]

  • Abolfazl Neyestani
Assistant Professor, Physics Department, Razi University, Kermanshah, Iran
چکیده [English]

In this research, the possible interrelationship between several global climatic indices has been investigated by employing four statistical methods. At the first step, the spectral content of the data and their intensities were obtained at different harmonics with using the spectral analysis. Then the correlation analysis was used to calculate the correlation coefficients between each pair of climatic signals, in order to check any linear relationship between them at different time lags. Finally, by exploiting the sophisticated wavelet coherence method, the correlation of indices was analyzed at different frequencies and times, and in addition, the linkage between the indices was examined from the scatter plots. 
The selected indices include the number of sunspots (SN), Southern Oscillation Index (SOI), Quasi-Biennial Oscillation (QBO), North Atlantic Oscillation (NAO) and Mediterranean Oscillation (MO). The monthly values for these indices were used for the statistical period from 1979 to 2021.
Based on the analysis, evidences of the presence of 11-year cycle of sunspots in the SOI signal were found. The results show that if the SN signal is considered as the cause and the SOI signal as the effect, the minimum value of the 11-year component of the SOI signal occurs about 3 years after the maximum value of the same component in the SN signal.
 The correlation method shows a weak linear relationship between other signals such as NAO, QBO, SOI and MO in all time lags, and the highest correlation in this case is between NAO and MO signals. However, a closer look at the wavelet coherence plots shows that these signals are strongly correlated at decadal and to some extent at inter-annual time scales.
The lagged correlation method and the scatter plots also confirm an increase in the linear relationship between sunspot cycle with the SOI index for the time lag of 33 to 36 months, and no significant linear relationship was generally observed among other indices. The highest correlation (about 0.2) at the time lag of zero is revealed to belong to the NAO and MO signals, which according to the wavelet coherence analysis, it is due to the decadal common in-phase oscillation between these two signals. Furthermore, common oscillations with consistent phase were found sporadically between each pair of selected signals in the inter-annual scales for some periods of time. The scatter plots also showed more details about the possible relationship between the data.
Our results show the potential of the spectral and wavelet coherence analysis (WTC) for identifying common or dominant frequency components of the important climatic signals, and they can be exploited as a complementary to the traditional lagged correlation analysis and other preliminary statistical analysis such as the analyzing the scatter plots.

کلیدواژه‌ها [English]

  • Climatic indices
  • variability
  • correlation
  • power spectra
  • wavelet coherence
ملاشریفی، آ.، محب­الحجه، ع.، و احمدی گیوی، ف.، 1398، مطالعه اثر نوسان اطلس شمالی بر رابطه بین مسیرهای توفان اطلس شمالی و مدیترانه با استفاده از داده­های بازتحلیل NCEP/NCAR و JRA-55: مجله فیزیک زمین و فضا، 45(2)، 423-440.
نیستانی، ا.، 1401، طراحی و کاربرد عملی پالایه­های رقمی در پردازش سیگنال­های هواشناسی، مجله فیزیک زمین و فضا، 48(2)، 361-380.
Addison, P. S., 2017, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC press.
Alizadeh-Choobari, O., Adibi, P., and Irannejad, P., 2018, Impact of the El Niño–Southern Oscillation on the climate of Iran using ERA-Interim data: Clim. Dyn. 51, 2897–2911.
Andrews, M. B., Knight, J. R., Scaife, A. A., Lu, Y., Wu, T., Gray, L. J., and Schenzinger, V., 2019, Observed and simulated teleconnections between the stratospheric Quasi‐Biennial Oscillation and Northern Hemisphere winter atmospheric circulation: Journal of Geophysical Research, 124, 1219-1232.
 Conte, M., Giuffrida, A., Tedesco, S., 1989, The Mediterranean Oscillation: Impact on Precipitation and Hydrology in Italy: Conference on Climate and Water. Publications of the Academy of Finland: Helsinki.
      Criado-Aldeanueva, F., and Soto-Navarro, J., 2020, Climatic indices over the Mediterranean Sea: A review: Applied Sciences, 10(17), 5790.
Grossmann, A., and Morlet, J., 2005, Decomposition of hardy functions into square integrable wavelets of constant shape: SIAM J. Math. Anal. 15(4), 723–736.
Das, J., Jha, S., and Goyal, M. K., 2020, On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: Wavelet & global coherence approaches: Atmospheric Research, 238.
Deng, L. H., Qu, Z. Q., Wang, K. R., Li, X. B., 2012, Phase asynchrony between coronal index and sunspot numbers: Adv. Space Res., 50(10), 1425-1433.
Ghasemi, A. R., and Khalili, D., 2008, The association between regional and global atmospheric patterns and winter precipitation in Iran: Atmos. Res., 88(2), 116-133.
Gómara, I., Rodríguez-Fonseca, B., Zurita-Gotor, P., and Pinto, J. G., 2014, On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation: Geophysical Research Letters, 41, 2182-2190. 
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., et al., 2010, Solar influences on climate: Rev. Geophys.,48, RG4001. 
Grinsted, A., Moore, J. C., Jevrejeva, S., 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series: Nonlin.Proc.Geoph., 11, 561–566.
Hurrell, J. W., and van Loon, H., 1997, Decadal Variations in Climate Associated with the North Atlantic Oscillation. In: Diaz H.F., Beniston M., Bradley R.S. (eds) Climatic Change at High Elevation Sites. Springer, Dordrecht.
Inoue, M., Takahashi, M., and Naoe, H., 2011, Relationship between the stratospheric quasi-biennial oscillation and tropospheric circulation in northern autumn: J. Geophys. Res., 116.
 Le Mouël, J. L., Lopes, F., and Courtillot, V., 2019, A solar signature in many climate indices: J. Geophys. Res., 124(5), 2600– 2619. 
Li, Y., Lau, N. -C., 2012, Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies: J. Clim., 25(1), 320-342.
Liess, S., and Geller, M. A., 2012. On the relationship between QBO and distribution of tropical deep convection: J. Geophys. Res., 117, D03108.
Lukianova, R. and Alekseev, G. 2004, Long-term correlation between the NAO and the solar activity: Sol. Phys., 224, 445–454.
Kodera, K., and Kuroda, Y., 2002, Dynamical response to the solar cycle: J. Geophys. Res., 107(D24).
Kuroda, Y., Kodera, K., Yoshida, K., Yukimoto, S., and Gray, L., 2022, Influence of the solar cycle on the North Atlantic Oscillation: Journal of geophysical Reserch-Atmosphere, 127(1).
Manikandan, G., Sairam, N.,  Sharmili, S.,  and Venkatakrishnan, S., 2013,  Achieving privacy in data mining using normalization: Indian Journal of Science and Technology, 6(4),  4268-4272.
Maraun, D., and Kurths, J., 2004, Cross wavelet analysis: significance testing and pitfalls: Nonlin. Processes Geophys., 11, 505–514.
Mares, I., Dobrica, V., Mares, C., and Demetrescu, C., 2021, Assessing the solar variability signature in climate variables by information theory and wavelet coherence: Sci. Rep., 11, 11337.
Martin-Vide, J., and Lopez-Bustins, J. A., 2006, The western Mediterranean oscillation and rainfall in the Iberian Peninsula: Int. J. Climatol., 26, 1455– 1475.  
 Miyake, F., Masuda, K., Nakamura, T., 2013, Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings: J. Geophys. Res., 118, 7483.  
Moore, J.C., Grinsted, A., and Jevrejeva, S., 2006, Is there evidence for sunspot forcing of climate at multi-year and decadal periods?: Geophys. Res. Lett., 33, L17705.
Neyestani, A., Karami, K., and Gholami, S., 2022, Exploring the possible linkage between the precipitation and temperature over Iran and their association with the large-scale circulations: Cumulative spectral power and wavelet coherence approaches: Atmospheric Research, 274, 106187.
Palutikof, J. P., Conte, M., Casimiro Mendes, J., Goodess, C. M., and Espirito, S. F., 1996, Climate and climate change. In Mediterranean Desertification and Land Use, Brandt CJ, Thornes JB (eds). John Wiley and Sons: London.
Son, S., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J., 2017, Stratospheric control of the Madden–Julian oscillation: J. Climate, 30, 1909–1922.
Tamaddun, K. A., Kalra, A., and Ahmad, S., 2017, Wavelet analyses of western US streamflow with ENSO and PDO: J. Water Clim. Chang., 8(1), 26-39.
Tan, X. Z., Gan, T. Y., Shao, D. G., 2016. Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies: J. Geophys. Res., 121(24), 14469–14486. 
Thomson, R. E., and Emery, W. J., 2014, Data Analysis Methods in Physical Oceanography, 3rd Edition, Elsevier Science.
Torrence, C., and Compo, G., 1998, A practical guide to wavelet analysis: Bulletin of the American Meteorological Society, 79, 61-78.
Torrence, C., and Webster, P. J., 1999, Interdecadal Changes in the ENSO-Monsoon System: J. Clim., 12(8), 2679-2690.
Velasco, V. M., and Mendoza, B., 2008, Assessing the relationship between solar activity and some large scale climatic phenomena: Adv. Space Res., 42(5), 866-878. 
Vicente-Serrano, S. M., and López-Moreno, J., 2008, Nonstationary influence of the North Atlantic oscillation on European precipitation: J. Geophys. Res., 113, D20120. 
Xu, J. C., Xie, J. L., Qu, Z. N., 2017, Phase relations between the Sunspot Numbers and Total Solar Irradiance: Astrophys. J., 851(2).
Yang, Y. -M., Park, J., An, S. -I., Wang, B., and Luo, X., 2021, Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes: Nat. Commun., 12, 1495. 
Zhang, J., Tian, W., Wang, Z., Xie, F., Wang, F., 2015. The influence of ENSO on northern midlatitude ozone during the winter to spring transition: J. Clim., 28(12), 4774–4793.